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Abstract 17 

 18 

Fungi secrete a variety of compounds that have wide ranging beneficial and negative effects on 19 

society and govern the outcome of host-pathogen interactions. The secreted compounds range from 20 

some of the most powerful toxins and carcinogens, to ethanol used in common commercial 21 

practices, and the ‘wonder drug’ penicillin. Much research in the past 50 years has focused on 22 

identifying the genes and their functions relating to the fungal secretome. Recent advances into the 23 

mechanisms by which phytopathogenic fungal secretion systems function and modulate virulence 24 

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1749461321000166
Manuscript_a328854e6a4ca6347d99140807a74afe

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1749461321000166


have broad implications for the agricultural and biotechnological industries. In this review, we focus 25 

on secretion mechanisms in phytopathogenic fungi with examples from key plant-pathogen systems. 26 

Current progress and knowledge gaps regarding secretion pathways and their regulation are 27 

discussed. We highlight possible approaches to using novel molecular techniques to generate 28 

alternative control methods to synthetic pesticides.  29 

 30 
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 32 

I. Introduction   33 

 34 

Fungi are ubiquitous organisms that secrete a wide range of compounds, small molecules, and 35 

proteins that allow them to externally digest and obtain nutrients from their environments. The 36 

process of secretion is conserved throughout the fungal kingdom and plays major roles in survival 37 

and proliferation. The molecules secreted by fungi have broad implications for society as they 38 

include harmful and potentially deadly toxins. The danger and importance of these mycotoxins 39 

gained widespread attention in the 1960’s from the Turkey X disease in which aflatoxin, a mycotoxin 40 

produced by Aspergillus flavus, was responsible for the death of up to 100,000 turkeys (Blount 1961; 41 

Nesbitt et al. 1962). However, the impact of mycotoxins dates back much further than the Turkey X 42 

mycotoxicosis outbreak. Hypotheses have suggested that the high human death rates of the bubonic 43 

plague in the 1300s could have been due to the immunosuppressant effects of mycotoxins in moldy 44 

grains (Matossian 1989).  45 

 46 

Although many studies have focused on the harmful nature of fungal secretion products, there are 47 

also many that have beneficial aspects. Ethanol, secreted by the budding yeast Saccharomyces cerevisiae 48 



is used to produce beer, and biofuels (Mohd Azhar et al. 2017; Parapouli et al. 2020). Penicillin, the 49 

first broad spectrum antibiotic, was originally discovered as a secretion product of Penicillium rubens 50 

and has been hailed as one of the greatest discoveries in modern medicine (Fleming 1929). Fungi 51 

have also been employed as ‘cell factories’ to produce a diverse range of secondary metabolites that 52 

have various industrial applications (Cairns et al. 2019; Meyer et al. 2016). Therefore, understanding 53 

the mechanisms and products of fungal secretion has wide-ranging economic and health 54 

implications.  55 

 56 

The biological mechanisms behind secretion are complex. Conserved processes within all lineages of 57 

fungi, including budding yeast, model filamentous fungi and phytopathogenic fungi are detailed in 58 

Figure 1. The secretory machinery consists of a network of molecular entities that are involved with 59 

protein folding, transport, maturation and secretion (Delic et al. 2013). These machineries consist 60 

mainly of SEC proteins that are essential for membrane fusion, transport vesicles, and molecular 61 

switches e.g. GTPases (Schekman 2002). Other integral parts of the secretion system include vacuole 62 

protein sorting proteins (VPSP) and the plasma membrane soluble NSF/alpha SNAP receptors 63 

(SNAREs) (Wickner and Schekman 2008). In filamentous fungi, the secretory pathway is larger and 64 

encompasses more processes than present in yeast (Celińska and Nicaud 2019; Liu et al. 2014; Ohno 65 

et al. 2011). For example, filamentous fungi have a larger predicted secretome size [See Aspergillus 66 

spp. (predicted secretome=757) and Penicillium spp. (620.5) vs Candida spp. (241.5), and Saccharomyces 67 

cerevisiae (156) from Lum and Min (2011)] and exhibit an increase in the RAB GTPase protein 68 

families and SNARE proteins (Swenned and Beckerich 2007).  69 

 70 

The genes that encode the proteins and enzymes affiliated with secretion are often clustered in the 71 

fungal genome (Keller 2015) and are regulated by environmental stimuli such as pH, light, 72 



temperature, carbon dioxide, oxygen and nutrients (Alkan et al 2013; Sarikaya-Bayram et al. 2015; 73 

Selvig and Alspaugh 2011; Tannous et al. 2020). Homologs of genes involved in secretion exist 74 

between model fungi and phytopathogens (Li et al. 2017; Soanes et al. 2008; Wang et al. 2018; Yan 75 

et al. 2020). In recent years, research evaluating the genes and molecules in the secretion pathway of 76 

filamentous phytopathogens has increased, as novel mechanisms to mine the genome, have shed 77 

light on the impact of fungal secretion on virulence during host-pathogen interactions (Jurick II et 78 

al. 2019; Levin et al. 2019a; Levin et al. 2019b; Tannous et al. 2018).  79 

 80 

Functional genes related to the secretory pathway are essential for virulence, and thus, for the 81 

proliferation and success of fungi (Schaller et al 2005; Sorgo et al. 2013). Virulence, (the severity of 82 

disease caused by an organism), and pathogenicity (the ability of an organism to cause disease) are 83 

complex processes dictated by a variety of host-pathogen interactions. Identifying key components, 84 

in the fungal secretome, for functional characterization that are associated with virulence and 85 

pathogenicity may yield novel and efficient approaches to control detrimental plant pathogens in the 86 

agricultural industry. Deletion of genes associated with the secretion pathway often results in 87 

decreased virulence (Jurick II et al. 2019; Levin et al. 2019; Tannous et al. 2018). In the following 88 

review we will discuss fungal secretion factors in plant pathogenic fungi with a focus on those that 89 

modulate virulence. Additionally, we will emphasize cutting-edge genomic, genetic and fundamental 90 

cell biology approaches, tools and concepts concerning secretion and how this work can lead to next 91 

generation controls.  92 

 93 

II. The Secretome of Phytopathogenic Fungi 94 

 95 



The molecules secreted by phytopathogenic fungi associated with virulence are versatile and 96 

abundant. Examples include mycotoxins used for host colonization (Ismaiel and Papenbrock 2015), 97 

and proteinaceous effectors (Selin et al. 2016) involved in host recognition and manipulation (Figure 98 

2). Although outside the scope of this review, smaller compounds released from fungi via membrane 99 

transport and diffusion also play a role in virulence. These include metabolites such as quorum 100 

sensing molecules (e.g. farnesol, phenylethanol tryptophol, and tyrosol), produced by multiple 101 

phytopathogens (Aspergillus spp., Penicillium spp. etc), that enable coordinated gene expression during 102 

pathogenesis (Albuquerque and Casadevall 2012; Mehmood et al. 2019), and volatile organic 103 

compounds (Hung et al. 2015; Morath et al. 2012).  104 

 105 

Host plants have evolved mechanisms to respond and defend themselves against fungal secretion 106 

products. In general, the intercellular interface between the fungal cells and the host is composed of 107 

compounds generated by both organisms. From the plant, volatile organic compounds, CWDE (cell 108 

wall degrading enzymes)-inhibitors, Polygalacturonase Inhibiting Protein (PGIP), and damage-109 

associated-molecular-patterns (DAMPs) are released into the intercellular space to trigger the plant 110 

immune system or to combat the toxins, effectors, and other secondary metabolites exuded by  111 

fungi (Kalunke et al. 2015; Xu et al. 2019).  112 

 113 

Fungi within the genera Aspergillus, Cladosporium, Collectotrichum, Fusarium and Penicillium produce 114 

mycotoxins on agricultural commodities which can be detrimental to the health of the humans and 115 

animals that consume them. Some of the most well studied mycotoxins produced by these fungi 116 

include aflatoxin, citrinin, and patulin. Aflatoxin, produced by Aspergillus species, occurs on multiple 117 

grain crops (Jelinek et al. 1989; Kensleer et al. 2011). Outbreaks of aflatoxin are relatively common 118 

and can cause acute illness and death in severe cases when the infected crops are ingested (Azziz-119 



Baumgartner et al. 2005; Krishnamachari et al. 1975; Reddy and Raghavender 2007). Citrinin is 120 

produced by species in the genera Aspergillus, Monascus and Penicillium, tends to be found on grain 121 

crops (Čulig  et al. 2017; Föllmann et al. 2014) and has been found to be nephrotoxic (Flais and 122 

Peraica 2009; Yu et al. 2006). Patulin, produced by P. expansum, is generally associated with 123 

postharvest fungal fruit pathogens (McKinley and Carlton 1991) and is commonly found in juice, 124 

fruit butters, and cider. In addition to the aforementioned symptoms, both patulin and citrinin are 125 

also potential carcinogens (Knasmüller et al. 2004).  126 

 127 

While many studies have highlighted the health implications of mycotoxins in humans, there have 128 

also been studies involving their impact on the host plant. Three recent studies evaluated the role of 129 

citrinin and patulin on P. expansum virulence.. It was found that patulin is a virulence factor as it is 130 

involved in host necrosis and fungal colonization (Jurick II et al. 2019; Sanzani et al. 2012; Snini et 131 

al. 2016). In other fungal species, such as Fusarium spp., production of mycotoxins like 132 

deoxynivalenol (DON) can result in stunted growth and reduced plant germination (Masucda et al. 133 

2007).  134 

 135 

Besides mycotoxins, major groups of molecules secreted by fungi that modulate virulence are 136 

proteinaceous effectors and carbohydrate-active enzymes (CAZymes). Effectors are small molecules 137 

that dictate the outcome of the plant-microbe interaction (Selin et al. 2016). The main function of 138 

pathogen effectors is to interfere with host plant pathogen-associated-molecular-patterns (PAMP)-139 

triggered immunity and subsequent effector-triggered immunity. The ability of a pathogen to 140 

successfully colonize and proliferate on their hosts depends on a variety of effectors secreted by the 141 

phytopathogen. Selin et al. (2016) provides a thorough review on some well-studied effectors found 142 

in phytopathogenic fungi. Carbohydrate-active enzymes (CAZymes) are a diverse set of proteins 143 



secreted by fungi that degrade plant cell wall polysaccharides (Glass et al. 2013; Kubicek et al. 2014). 144 

They have been shown to be virulence factors contributing to fungal growth and development in 145 

multiple systems by aiding their invasion into host cells (Brito et al. 2006; Kema et al. 2008; Ma et al. 146 

2019; Van Vu et al. 2012).  147 

 148 

Research on molecules secreted by phytopathogens is an expanding area of research. Contemporary  149 

methodologies, such as comparative genomics, computational biology, transcriptomics, and the 150 

CRISPR/ Cas9 system, have and will continue to contribute to the development of next-generation 151 

methods to control fungal phytopathogens. For example, organisms can be engineered, and 152 

employed as biological control agents, that target and break down some of the molecules within the 153 

secretome of phytopathogenic fungi. New bioinformatic techniques are already being implemented 154 

such as the effector prediction pipeline developed by Levin et al. (2019) which allows the relatively 155 

rapid identification of effectors secreted by phytopathogenic fungi that can then be verified by 156 

functional genetic approaches. The rapid identification of effectors will greatly enhance researchers’ 157 

abilities to locate and study their function. We expect future insights into the phytopathogenic 158 

secretome to continue to contribute groundbreaking innovations to the global agriculture sector. 159 

 160 

III. Fungal Secretion Machineries 161 

 162 

Phytopathogens contain specific receptors that allow them to recognize their host and initiate 163 

pathways that lead to the secretion of hundreds of proteins from intracellular compartments to the 164 

exterior of the cell (Jiang et al 2018; Tyler 2002). The secretion of small molecules by fungi is 165 

primarily accomplished through the classical and non-classical (bypassing of the golgi) routes. There 166 

is also a third route, where small molecules such as mycotoxins are secreted through the formation 167 



of exosomes/toxisomes via cytoskeletal reorganization. The machineries involved with the different 168 

secretion pathways of fungal phytopathogens consist of a variety of proteins including SEC proteins, 169 

GTPases, vacuole protein sorting proteins (VPSP), and the plasma membrane soluble NSF/alpha 170 

SNAP receptors (SNAREs). 171 

 172 

 In the classical route, proteins are synthesized in the cytosol and then co-translationally translocated 173 

to the endoplasmic reticulum where they are glycosylated or decorated with other carbohydrate/lipid 174 

moieties. Proteins are transported by vesicles to the Golgi and then to the exterior of the cell and 175 

typically require a N terminal signal peptide for translocation (Delic et al. 2013) (Figure 1). Virulence 176 

genes associated with the secretion pathway within phytopathogens tend to have homologs in 177 

ancestral yeast species such as Saccharomyces cerevisiae (Gijzen and Nuernberger 2006; Jurick II et al. 178 

2019; Levin et al. 2019; Nadal et al. 2010). Locating these orthologs in phytopathogenic fungi can fill 179 

gaps in the literature on their secretory mechanisms and how they differ from model filamentous 180 

fungi and yeasts. Traditionally, both forward and reverse genetics approaches are used to determine 181 

the role of the genes involved in phytopathogen secretion and virulence. For example, a reverse 182 

genetics approach was used to identify the S. cerevisiae ortholog to the CWDE transcription factor, 183 

snf1, in the fungal corn pathogen, Ustilago maydis. The ∆snf1strains exhibited reduced virulence when 184 

inoculated on maize (Nadal et al. 2010). There are six homologs of the conserved NLP gene family 185 

(Gijzen and Nuernberger 2006) that have been identified in the Colletotrichum higginsianum genome 186 

(Kleemann et al. 2012). Other examples of homologs identified, that are involved with the secretory 187 

pathways of phytopathogens, include the sntB gene, found in Aspergillus (Pfannenstiel et al. 2017), 188 

and its ortholog, the snt2 gene, found in Fusarium oxyporum (Denisov et al. 2011a), Neurospora crassa 189 

(Denisov et al. 2011b), and Magnaporthe orzae (He et al. 2018). The sntB gene was recently found to be 190 

a virulence factor in P. expansum in which mutants exhibited reduced mycotoxin production, 191 



conidiation and virulence (Tannous et al. 2020). Sec4, a gene encoding a Rab GTPase in S. cerevisiae, 192 

that is involved with protein secretion and vesicule trafficking, has a homolog in the corn pathogen 193 

Fusarium verticilliodes, FvSec4 (Goud et al. 2008; Salminen and Novick 1987; Yan et al. 2020). ∆FvSec4 194 

mutants exhibited decreased virulence and decreased production of the mycotoxin fumonisin B1 195 

(Yan et al. 2020). As fumonisin B1 has been associated with virulence in other fungal pathogens 196 

these results were not unexpected (Desjardins et al. 1995). Furthermore, FvSec4, attached with a 197 

green florescent protein, was found in growing hyphal tips leading to the hypothesis that FvSec4 is 198 

associated with protein trafficking in F. verticilliodes which is the evolutionary conserved function of 199 

Sec4 in all eukaryotes (Yan et al. 2020). In a different system, the Rab GTPase CLPT1, was found to 200 

be a pathogenicity factor in the fungal pathogen of bean, Colletotrichum lindemuthianum (Siriputthaiwan 201 

et al. 2005). CLPT1 is known to be involved with the transport of vesicles from the Golgi to the 202 

plasma membrane and can complement the yeast Sec4 mutant (Dumas et al. 2001).  203 

 204 

The unconventional pathway usually does not require a signal peptide, as the Golgi is bypassed, and 205 

proteins are transported to endosomes/vacuoles following post-translational modification before 206 

they are excreted (Rabouille 2017; Miura and Ueda 2018). It should be noted that some proteins 207 

secreted via the unconventional pathway require a signal peptide for initial translocation into the 208 

endoplasmic reticulum. The unconventional pathways are commonly associated with proteins 209 

involved in fungal virulence (Giraldo et al. 2013; Jurick II et al. 2019; Miura and Ueda 2018; Reindl 210 

et al. 2019). In some instances, such as with DON produced in Fusarium graminearum, the causative 211 

agent of Fusarium head blight, the mature toxin is developed intracellularly and transported within 212 

toxisomes, a specialized endosome vesicle that are proliferations of the smooth endoplasmic 213 

reticulum (Boenisch et al. 2017; Menke et al. 2013). The assembly of these toxisomes are provided 214 

support by the α1 and β2 tubulins, as such, the disruption of these microtubules disrupts DON 215 



biosynthesis (Zhou et al. 2020). Additionally, myosin1 molecular motors are involved with toxisome 216 

formation and mycotoxin production, as inhibition of myosin 1 leads to decreased DON production 217 

(Tang et al. 2018). Toxisomes are also thought to play a role in the synthesis of other mycotoxins 218 

within F. graminearum such as Culmorin (Flynn et al. 2019). For other secondary compounds, e.g. 219 

patulin, the last step of the biochemical synthesis (conversion of the non-toxic ascladiol intermediate 220 

to the final mycotoxin, patuin via the secreted enzyme Pat E) occurs outside of the fungal cell to 221 

separate the fungus from the adverse effects of its own toxin which serves as an auto resistance 222 

mechanism (Jurick II et al. 2019; Li et al 2019).  223 

 224 

The fungal secretion machineries that are part of the unconventional pathways tend to consist of 225 

extracellular vesicles (Rizzo et al. 2020). Extracellular vesicles are secreted membrane vesicles such as 226 

exosomes and micro vesicles (van Niel et al. 2018). These vesicles are well known in yeasts and have 227 

recently been described in phytopathogens including Fusarium oxysporum f. sp. vasinfectum where they 228 

were hypothesized to be linked to pathogenicity (Bleackley et al. 2019). Additionally, large protein 229 

families such as SNAREs play a role in vesicle mediated transportation. In the rice blast fungus, M. 230 

oryzae, multiple SNAREs have been identified that affect pathogenesis and/or virulence (Dou et al. 231 

2011; Li et al. 2017; Song et al. 2010). Interestingly, in M. oryzae, effectors can be secreted either by 232 

the conventional pathway (ER-Golgi) or through exocyst components and the Sso1 t-SNARE. It 233 

should be noted that the conventional pathway is associated with secretion of apoplastic effectors 234 

whereas exocyst components, such as EX070 and SEC5, are required for efficient secretion of 235 

cytoplastic effectors (Giraldo et al. 2013). In the plant pathogen F. graminearum, deleting a gene 236 

associated with the t-SNARE protein, Sso2, involved with secretion, causes decreased pathogen 237 

virulence. Single mutants of both ∆sso2 and, an ATP-binding cassette transporter, ∆abc, reduced 238 

production of the mycotoxin DON while a double mutant had an additive effect on DON in planta 239 



(O’mara et al. 2020). Additionally, in F. graminearum, the SNARE’s, FgSso1, FgVam7 and FGVps39 240 

are known to be important virulence factors (Li et al. 2017). In another phytopathogenic fungus, 241 

Verticillium dahliae (vascular wilt disease), two SNARE encoding genes, VdSec22 and VdSso1 are 242 

required for full virulence on cotton plants and were found to be homologous to the yeast SNARE 243 

encoding genes Sec22 and Sso1 (Wang et al. 2018).  244 

 245 

Furthermore, there have been many studies that have linked gene regulation of the secretion of 246 

enzymes and proteins involved in virulence to environmental stimuli (Barad et al. 2015; Hadas et al. 247 

2007; Jurick II 2010; Jurick II et al. 2012; Kumar et al. 2017; Prusky et al. 2004; Yao et al. 1996). For 248 

example, the effect of pH and pacC regulation on the enriched expression of genes associated with 249 

host-cell-wall degradation have been reported. Fungal genes with known functions associated with 250 

virulence at low pH include chitinase-associated genes, pectin lyase, and polygalacturonase (PG) 251 

activities (Jurick II 2010; Jurick II et al. 2012; Yao et al. 1996). Conversely, the over-representation 252 

of aspartic endopeptidase-pep1, which is associated with pH modulation of P. digitatum and catalyzes 253 

hydrolysis of elastin and collagen (the major structural proteins of cell membranes), plays a 254 

significant role in the virulence of P. digitatum on citrus fruits (Ballester et al. 2019). Aspartic 255 

endopeptidase was up-regulated during infection of citrus fruits, and contributed P. expansum 256 

colonization, either by degradation of plant cell-wall components to provide a nitrogen supply, or by 257 

inactivating defense proteins. This type of response at low ambient pH is probably a result of 258 

accumulation of gluconic acid (GLA) during the virulence process to ensure that secreted enzymes 259 

and metabolites are produced at the optimal pH to facilitate their physiological functions (Barad et 260 

al. 2016). Additionally, several reports have indicated different responses of Penicillium under 261 

different nutritional regulation (Jurick II 2012, Barad et al. 2015). High-sugar content fruits may 262 

enhance the acidification of the environment and GLA accumulation, and ammonia produced under 263 



nutritional limitation and low‐pH conditions in the host seems to play a central role in the activation 264 

of pacC responsiveness (Hadas et al. 2007; Prusky et al. 2004). The modulation of gene expression 265 

and secretion mechanisms involved with virulence may also be affected by host physiology. Kumar 266 

et al. (2017) reported that ∆laeA mutants lacking the secretion of patulin, showed 25% reduction in 267 

disease severity in mature fruit (high sugar content, 24% TSS) compared to early harvested fruit (low 268 

sugar content, 12% TSS) fruit.  269 

 270 

Genes in phytopathogenic fungi often have homologs in model systems (Goud et al. 2008; Salminen 271 

and Novick 1987; Wang et al. 2018; Yan et al. 2020). The difficult nature of phytopathogens has 272 

caused many significant gaps in the literature regarding the function and regulation of all their genes 273 

related to the fungal secretion pathway(s). These challenges include their large genomes and obligate 274 

parasitic lifestyle, as well as the discrepancies in their gene annotation and characterization. 275 

However, functional genomic approaches, using novel gene editing and bioinformatic tools will 276 

facilitate major leaps forward in our understanding of biochemical knowledge of the pathways, 277 

machinery, and regulators of the fungal phytopathogenic secretome for pathogens with diverse 278 

lifestyles that include necrotrophs, hemi-biotrophs, and strict biotrophs. 279 

 280 

IV. Capitalizing on secretion to formulate next-generation controls  281 

 282 

Secretion of compounds, such as mycotoxins by phytopathogenic fungi have major economic 283 

implications and have been estimated to cause upwards of 500 million dollars annually to the United 284 

States Agriculture Industry (Figure 3) (Robens and Cardwell 2003). Current mechanisms to control 285 

phytopathogenic fungi and their mycotoxins involve intensive fungicide and chemical regimes that 286 

can be damaging to the environment. Current control strategies involve the application of intensive, 287 



single-site mode of action, synthetic fungicides. Overreliance on these fungicides can lead to the 288 

emergence of resistant fungal populations (Bertrand and Saulie-Carter 1978; Rosenberger 1990; 289 

Sholberg and Haag 1996). Cultural and biological control strategies are commonly implemented into 290 

integrated pest management (IPM) programs and fungicide resistance management strategies to 291 

supplement and limit the use of synthetic pesticides. Unfortunately, their efficacy is often inferior to 292 

synthetic fungicides (Moparthi and Bradshaw 2020). Breeding resistant cultivars of agricultural crops 293 

is an important part of an IPM plan. However, there has been limited success breeding commercial 294 

fruit cultivars (e.g. apples) that are resistant to post-harvest pathogens (Janisiewicz et al. 2008; Jurick 295 

II et al. 2011; Luo et al. 2020). 296 

 297 

The study and evaluation of how fungal secretion modulates virulence can lead to the development 298 

of next-generation controls and innovations for the global agriculture industry. These include the 299 

development of antifungals, biological control agents, and bioherbicides. Phytopathogens secrete a 300 

range of chemically diverse compounds (Grijseels et al. 2016) that can be toxic to both bacteria and 301 

plants (Ismaiel and Papenbrock 2015; Venkatesh and Keller 2019). Effectors and other secretion 302 

products have already begun to be evaluated in disease resistance breeding programs against 303 

phytopathogens (Vleeshouwers and Oliver 2014). 304 

 305 

Manipulating protein expression and secretion in fungi and their host plants through genetic 306 

engineering has broad implications for modern agriculture and plant pathological studies. One 307 

possible avenue could be to engineer the host plant to include chemistries that interfere with the 308 

different pathways and regulators of secretion in phytopathogens. Targeting secretory processes may 309 

be advantageous as it could limit the negative effects of fungi (such as mycotoxins) while having 310 

minimal impacts on non-target organisms i.e. researchers could target processes that are species or 311 



genus specific. Additionally, as many of the molecules secreted by fungi are involved in competition 312 

(Keller 2015; Künzler 2018; Venkatesh and Keller 2019), organisms such as yeast or bacteria can be 313 

engineered into cell factories that synthesize secretion products of phytopathogenic fungi that have 314 

antimicrobial properties. These synthesized compounds can be formulated into commercially 315 

available broad spectrum or potentially species-specific fungicides. Using yeast or bacteria as cell 316 

factories could be a valuable tool to mass produce, study, and utilize secretion products from hard to 317 

cultivate phytopathogens i.e. obligate pathogens such as powdery mildews and rusts. Additionally, 318 

the evaluation of the fungal secretome can lead to control methods that can be used in organic 319 

agriculture production. For example, non-virulent biocontrol agents can be engineered to 320 

outcompete phytopathogens. This tactic is based on previous research that used a naturally 321 

occurring, non-toxigenic, Aspergillus flavus mutant as a biocontrol agent, Afla-guardTM (Syngenta), to 322 

outcompete toxigenic strains of Aspergillus flavus.  323 

 324 

Another area of research could be to generate environmentally friendly herbicides. The chemicals 325 

that fungi exude are often phytotoxic (Wipfler et al. 2019) and can be host specific (Meena and 326 

Samal 2019). These toxins can be analyzed and synthesized as potential organic, environmentally 327 

friendly, selective bioherbicides. For example, Zearalenone and DON are toxic on germinating corn 328 

embryos and can be analyzed as potential pre-emergent herbicides (Mclean 1995). As for postharvest 329 

pathogens, one area that is generally untapped is the molecular aspects that govern decay. Blocking 330 

the signaling pathways and regulators of decay is a potential route to the generation of novel crop 331 

protection strategies.  332 

 333 

Fungi contain an array of secretion products, particularly secondary metabolites, that have the 334 

potential to be used by the agriculture industry as ‘organic,’ ‘environmentally friendly,’ pesticides. 335 



The genes associated with these products tend to be arranged in a biosynthetic gene cluster (Keller 336 

2015; Venkatesh and Keller 2019) and by using genomic methods, biosynthetic gene clusters from a 337 

range of phytopathogenic fungi can be mined and engineered into cell factories to locate, analyze 338 

and synthesize a range of secretion products that have fungicidal/herbicidal properties. Developing 339 

next generation control methods using genomic and biotechnological approaches has great potential 340 

for control options that will augment and potentially limit the use of synthetic, single-site mode of 341 

action, fungicides.  342 

 343 

V. Summary and Conclusions 344 

 345 

Secretion in phytopathogenic fungi consists of complex molecular pathways and cellular processes 346 

that drive virulence. Phytopathogens contain specific receptors that allow them to recognize viable 347 

hosts and initiate secretory pathways that lead to the secretion of hundreds of proteins and small 348 

molecules from intracellular compartments to the exterior of the cell. The effectors, mycotoxins, and 349 

CWDE secreted by phytopathogenic fungi are some of the main determinants of virulence and 350 

pathogenic success. The phytopathogenic fungal secretome, as well as the pathways and regulators 351 

of secretion, are key avenues of research that can shed light on novel mechanisms that can 352 

contribute to limiting the impact of mycotoxins and phytopathogens through the targeted 353 

development of new antifungals. Breakthroughs and technological advances over the past 20 years 354 

suggest that next generation controls, based on secretion products, could become commercially 355 

available in the near future. We anticipate that products and genes of the phytopathogen secretome 356 

will be exploited to benefit society in many ways such as the development of next generation 357 

biological controls and in synthetic biology to develop targeted metabolic factories. In addition, an 358 

understanding of the factors, pathways and regulators involved in secretion will uncover novel 359 



aspects of the pathogen secretome and plant-pathogen interactions to contribute to the larger body 360 

of fundamental scientific literature.  361 
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Figures:  784 

 785 

Figure 1. Diagram of the conventional protein secretion pathways in phytopathogenic fungi (left) 786 

and budding yeast (right). The pathway required for protein secretion is conserved between 787 

phytopathogens and budding yeast and share many homologs in common. Proteins are synthesized 788 

in the cytosol and then co-translationally translocated to the endoplasmic reticulum where they are 789 

glycosylated or decorated with other carbohydrate/lipid moieties. Proteins are transported by 790 

vesicles to the Golgi  and then to the exterior of the cell, typically requiring a signal peptide to direct 791 

the protein to the proper cellular destination. Proteins can also be transported to the vacuole for 792 

degradation. A few genes and proteins involved in the secretory system are shown in budding yeast 793 

as well as their corresponding homologs in the filamentous phytopathogens Aspergillus niger 794 

(Ano1g03820), Fusarium graminearum (FGSG_09928), Fusarium verticilliodes (FvSec4) or Puccinia graminis 795 

GeneTF TF

Cytosol



(PGTG_08243). N=Nucleus, V=Vacuole, ER=Endoplasmic Reticulum, GA=Golgi Apparatus, 796 

TF=Transcription Factor. Figure was made using BioRender.com. 797 
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 799 

Figure 2. Current conceptual model displaying the secretory molecules and machineries in the 800 

Penicillium expansum-Malus domestica system that are associated with virulence. A focus on the genes, 801 

and the pathway, for the secretion of the mycotoxin patulin is presented. Figure was made using 802 

BioRender.com. Image of the apple cells in the upper right corner originate from Lashbrooke et al. 803 

(2015). Black arrows from a gene refers to the secretory product the gene is associated with whereas 804 

orange arrows signify the movement of molecules through the secretory machinery. N=Nucleus, 805 

V=Vacuole, ER=Endoplasmic Reticulum, GA=Golgi Apparatus, M=Mitochondrion. 806 



 807 

Figure 3. Mycotoxin producing fungi impact the global agricultural industry. A) Scanning electron 808 

micrograph showing whorled conidiophore containing spherical conidia produced terminally in 809 

chains from one of the main mycotoxin producing fungi, Penicillium expansum. B) Apple cull pile 810 

consisting of a range of decayed fruit containing mycotoxin producing fungi at a commercial apple 811 

packing and storage facility. C) Sorting and grading high quality apple fruit prior to fungicide 812 

application via drench at a commercial apple fruit packer.  813 
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