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One sentence summary: Diarrhoeagenic Escherichia coli (DEC) express numerous surface colonisation factors contributing to their contamination of the
food chain, from natural environments, animal reservoirs, food processing environments to food matrices and ultimately, human infection.
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ABSTRACT

Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some
strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli
include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii)
enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to
human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and
contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and
biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular
determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated
into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most
diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs,
heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii)
supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or
conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it
occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
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INTRODUCTION

Most recent phylogenetic analyses have revealed that the
Escherichia genus is subdivided into eight groups containing
three species, namely, Escherichia coli, Escherichia fergusonii and
Escherichia albertii, as well as five clades numbered from I to
V (Lawrence and Hartl 1991; Walk et al. 2009). Escherichia coli
is undoubtedly the most investigated bacterial species and is
used as a model organism in microbiology. This lipopolysaccha-
ridic (LPS) diderm bacterium (archetypical Gram-negative bac-
terium) is primarily known as a harmless commensal of the gas-
trointestinal tract (GIT) (Mason and Richardson 1981; Chagnot
et al. 2013). While E. coli is prevalently an inhabitant of the gut
of warm-blooded animals, especially mammals but also birds,
it is worth mentioning this bacterial species can also be iso-
lated from fish, frogs or reptiles, such as crocodiles, turtles or
snakes, but also insects, such as flies (Janisiewicz et al. 1999;
Souza et al. 1999; Gordon and Cowling 2003; Escobar-Paramo et al.
2006; Blazar, Allard and Lienau 2011); E. coli generally appears
more prevalent in herbivores and omnivores than carnivores.
In humans, E. coli colonises the GIT of young children early in
life and usually represents less than 1% of the human intestinal
microbiota in adults (Eckburg et al. 2005).

Nevertheless, some E. coli species possess some viru-
lence factors that enable them to cause a broad range of
human extraintestinal and intestinal infections. On one side
extraintestinal pathogenic E. coli (ExPEC) mainly comprises the
uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC),
necrotoxic E. coli (NTEC) and sepsis-associated E. coli (SEPEC). On
the other side, and in addition to the adherent invasive E. coli
(AIEC) associated with Crohn’s disease (Mann and Saeed 2012),
the intestinal pathogenic E. coli (InPEC) essentially encompasses
six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i)
enterotoxigenic E. coli (ETEC), (ii) enteroaggregative E. coli (EAEC),
(iii) enteropathogenic E. coli (EPEC), (iv) enterohemorragic E. coli
(EHEC), (v) enteroinvasive E. coli (EIEC) and (vi) diffusely adher-
ent E. coli (DAEC) (Kaper et al. 2004; Croxen and Finlay 2010); of
note, EHEC belong to the larger group of shigatoxin-encoding
E. coli (STEC) or shigatoxin-producing E. coli, which are not all
considered as pathogenic as they can exhibit very various viru-
lence levels ranging from avirulence to hyper-virulence (Karmali
et al. 2003; Laing et al. 2009; Monteiro et al. 2016). The pathogenic-
ity of DEC strains is well documented and their main virulence
factors are also well defined (Croxen and Finlay 2010). Some of
these pathotypes are not restricted to human infections, but can
be responsible for diarrhoea in animals, for instance (i) ETEC in
porcines (piglets), bovines (calves) or ovines (lambs), (ii) EPEC in
rabbits, dogs, cats, pigs, calves, lambs and goats and (iii) STEC
in calves and piglets (Beutin 1999; DebRoy and Maddox 2001); to
date, EAEC, EIEC and DAEC have not been reported as etiological
agents of diarrhoea in animals. Despite the high genome plastic-
ity demonstrating intensive gene flow, the population structure
of E. coli remains mostly clonal (Touchon et al. 2009), with a clear
delineation into seven principal phylogenetic groups (A, B1, B2,
C, D, E and F) (Jaureguy et al. 2008; Walk et al. 2009; Tenaillon
et al. 2010; Clermont et al. 2013; Beghain et al. 2018). Commen-
sal E. coli strains generally belong to phylogroup A, whereas DEC
usually belong to phylogroups A, B1, C, D and E (Jaureguy et al.
2008; Okeke et al. 2010; Croxen et al. 2013; Hazen et al. 2016; Rossi
et al. 2018): (i) ETEC can be found in phylogroups A and B1 and to
lesser extent in D, (ii) EAEC are found within phylogroup A but
also B1, D and to a smaller extend in B2, (iii) EPEC can belong to
phylogroups E and B2, (iv) EHEC strains are mostly found in phy-
logroups B1 and D but also in E (with the with serotype O157:H7

or O104:H4), (v) EIEC are mainly present in phylogroups A, B1 and
E, together with Shigella, which are essentially E. coli species from
phylogenetic and taxonomic perspectives (Brenner et al. 1972;
Lan and Reeves 2002; Chaudhuri and Henderson 2012; Pettengill,
Pettengill and Binet 2015) and (vi) DAEC which mostly belong to
phylogroups B2 and D (Servin 2014; Mosquito et al. 2015; Walczuk
et al. 2019). This distinct grouping suggests a parallel evolution
of the different pathotypes on multiple occasions, possibly with
the intervention of mobile elements enabling the acquisition of
specific combinations of virulence factors (Chaudhuri and Hen-
derson 2012; Croxen et al. 2013).

DEC can be found all along the food chain (Giaouris et al.
2014; Kim, Cho and Rhee 2017). They can have various environ-
mental reservoirs, such as ruminants for EHEC, and are mainly
transmitted to humans by the faecal-oral route through the con-
sumption of contaminated food, including water or contact with
contaminated surfaces (Croxen et al. 2013). Besides anthropo-
zoonosis, transmission can also occur from host to host between
humans. In any case, the colonisation of the food chain by
DEC is a major issue for the agri-food and public health sec-
tors alike. The surface colonisation process can occur via bac-
terial adhesion and/or biofilm formation to various biotic or
abiotic surfaces. When the reversible adhesion to the surface
by low energy linkages (e.g. electrostatics and Van der Waals
interactions) is overcome, some bacteria can grow at the sur-
face. As such, biofilm formation can be broadly defined as the
sessile development of microorganisms at a surface or inter-
face (Azeredo et al. 2017). Biofilm can be monospecies but are
more generally multispecies in the natural environment, form-
ing a complex multicellular community, which is often embed-
ded in an exopolymeric matrix (EPM) (Costerton 1995; Coster-
ton, Stewart and Greenberg 1999). It confers to bacterial cells an
increased resistance against environmental stress, antibiotics
and/or immunological defences of the host. Once the reversible
adhesion is overcome, the bacterial biofilm formation is per se
divided in several steps: (i) initial and irreversible adhesion of
bacterial cells to the surface, (ii) bacterial division at the site of
adhesion resulting in the formation of microcolonies, (iii) matu-
ration of the biofilm architecture into a three-dimensional struc-
ture and (iv) bacterial dispersion enabling the colonisation of
other sites (O’Toole, Kaplan and Kolter 2000; Hall-Stoodley and
Stoodley 2002). Biofilm formation can thus plays a key role in
DEC ecophysiology by enabling colonisation of various environ-
mental niches (soil, water, vegetables, agri-food surfaces, etc. . . ),
the asymptomatic and direct colonisation of some hosts, as well
as contributing to transmission through the food chain and ulti-
mately human infection (Ahmed et al. 2013).

Most information about the colonisation process in E. coli is
focused on the domesticated laboratory strain K12, commonly
considered as representative of the E. coli species (Beloin et al.
2008). However, this notion is biased due to the numerous and
very significant genotypic and/or phenotypic differences with
commensal and pathogenic E. coli isolates (Hobman, Penn and
Pallen 2007). Indeed, E. coli K12 has one of the smallest genomes
compared to other genome-sequenced strains of E. coli due to the
loss of a large variety of genes during its domestication (Lenski
2017). With regards to the selective pressures that shapes the
genome evolution, E. coli K12 have been replicated and stud-
ied for a long time under laboratory conditions, far from those
encountered in natural environments (Hobman, Penn and Pallen
2007); some molecular determinants, including some surface
colonisation factors (SCFs), could thus be lacking or misreg-
ulated in domesticated laboratory strains of E. coli compared
to commensal and pathogenic E. coli isolates. As the interface
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Figure 1. Schematic representation of the exopolymeric matrix (EPM) in E. coli biofilm. By analogy with the extracellular matrix (ECM) in mammalian tissue, the EPM

in bacterial biofilm can be further discriminated between (i) the EPM closely associated with the bacterial cells, i.e. the cell-associated EPM (caEPM) (purple shade
background), and (ii) the interstitial EPM (iEPM) (white background). Molecular determinants of the caEPM are attached, anchored or linked to the bacterial cell surface.
Besides cell-surface proteinaceous determinants including monomeric proteins (not depicted in the picture) and supramolecular protein structures, such the flagella
and pili, molecular components of caEPM further comprise extracellular polysaccharides (EPS), namely, some lipopolysaccharides (LPS) as well as poly-β-1,6-N-acetyl-

D-glucosamine (PNAG) and colanic acid, which both form a capsule. Together with colanic acid that can be released from the bacterial cell surface, cellulose can
compose the EPS part of the iEPM. Besides extracellular DNA (eDNA), some exoproteins (not depicted in the picture) and outer membrane vesicles (OMV) may also
constitute the iEPM in E. coli biofilm.

between the bacterial cell and its surroundings, the molecular
surface determinants are key players in the initial adhesion and
sessile development processes and this review aims at sum-
marising exhaustively the SCFs present in DEC. The complex-
ity of the regulation network occurring at various stages, from
pre-transcriptional to post-translocational levels, is also high-
lighted. A greater understanding of the parameters that influ-
ence adhesion and biofilm formation may inform the develop-
ment of interventions to minimise DEC dissemination in the
food chain, from the environment, animal, food, to human.

MOLECULAR DETERMINANTS INVOLVED IN
SURFACE COLONISATION BY DEC

The colonisation processes along the food chain, from natural
environments, such as soil, plants and animals, to food environ-
ments, including the industrial processing food chain and food

matrices, and ultimately infection or asymptomatic carriage in
human, are very complex and involves many molecular deter-
minants. Sessile development at a surface or interface is gen-
erally accompanied by the formation of an EPM embedding the
bacterial cells in biofilms (Fig. 1). These exopolymers can act as
glue for adherence of the bacterial cell to the support and shape
the architecture of the biofilm (Hobley et al. 2015). Furthermore,
the EPM provides protection by shielding the bacteria from des-
iccation and antimicrobial compounds but also participates in
the channelling of nutrients and signalling molecules (Suther-
land 2001; Starkey et al. 2004; Beloin et al. 2008). As such, the EPM
contribute to the survival strategy and persistence of bacteria
in various environmental conditions (Branda et al. 2005). Molec-
ular determinants participating in the surface colonisation by
DEC can either be closely associated with the bacterial cell sur-
face and form the cell-associated EPM (caEPM) or present in the
extracellular milieu, namely the interstitial EPM (iEPM) (Fig. 1)
(van Houdt and Michiels 2005).
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At a biochemical level, EPM components can be broadly dis-
criminated between (i) extracellular polysaccharides (EPS), (ii)
extracellular DNA (eDNA) and (iii) surface proteins. Depending
on the different DEC pathotypes, these various determinants
can be either present or absent (Table 1). Outer membrane vesi-
cles (OMVs) have been reported to be components of the EPM
in E. coli K12 (Schooling and Beveridge 2006) and their presence
in biofilm from DEC is likely, although it remains to be demon-
strated. To date, there is no report of their contribution to biofilm
formation in DEC, as observed in Pseudomonas aeruginosa or Heli-
cobacter pylori (Yonezawa et al. 2009; Wang, Chanda and Zhong
2015), but it is an aspect that would deserve further investiga-
tion in DEC. Of note, poly-γ -glutamate (PGA) can be found as a
component of the EPM of numerous bacteria, especially parietal
monoderm bacteria (archetypical Gram-positive bacteria) and
only a few LPS-diderm bacteria, where it can either be released
or cell-surface attached to form a capsule (Candela and Fouet
2006; Ogunleye et al. 2015; Radchenkova et al. 2018) but, to date,
this has never been reported in any E. coli strain.

Exopolysaccharides (EPS)

EPS are one of the main components of the EPM in E. coli biofilms
(Beloin, Roux and Ghigo 2008). DEC can biosynthesise a vari-
ety of EPS, namely, (i) lipopolysaccharide (LPS), (ii) poly-β-1,6-N-
acetyl-D-glucosamine (PNAG), (iii) colanic acid and (iv) cellulose.
Because of their intimate association with the bacterial cell sur-
face, several of these EPS can contribute to the caEPM and the
formation of a so-called capsule. Actually, E. coli harbours some
serotype-specific polysaccharides, namely lipopolysaccharides
(LPS) (O antigen) and capsular polysaccharides (K antigen). E. coli
capsules are composed of high-molecular weight polysaccha-
rides embedding the bacterial cells and linked to the cell-surface
via covalent attachments (Whitfield 2006). More than 80 capsular
antigens have been reported in E. coli, which are divided into four
groups, from G1 to G4 (Whitfield 2006; Yaron and Romling 2014).
DEC (including EPEC, ETEC and EHEC) produce G1 and G4 cap-
sules that share a common assembly system and can be asso-
ciated with the lipid A of LPS (KLPS) or be structurally similar to
the O-polysaccharides of the LPS (O-antigen capsules). During
an infection, these capsules allow bacteria to be protected from
opsonophagocytosis and complement-mediated killing (Whit-
field 2006). In EHEC O104:H4, the capsule has been shown to play
a role in bacterial survival in the environment and in direct bac-
terial interaction with plants (Jang and Matthews 2018).

Lipopolysaccharide (LPS)
LPS is located at the outer leaflet of the outer membrane (OM)
and part of the caEPM (Raetz and Whitfield 2002). This glycoli-
pidic polymer is formed around a toxic component, lipid A, and
for this reason is also considered an endotoxin; the LPS is further
composed of the core region linked to the lipid A (divided into
an inner and outer part) and the O-antigen that is linked to the
outer part of the core region (Raetz and Whitfield 2002). Biosyn-
thesis and assembly pathways of LPS have been fully described
and involve more than 50 genes encoded in operons or mono-
cistrons scattered on the bacterial chromosome (Sandkvist 2001;
Szalo, Taminiau and Mainil 2006). The structures of lipid A and
its core region are highly conserved in E. coli but the core region
has five basic structures, called R1, R2, R3, R4 and K12. Among
these, R1 is the most prevalent in non-STEC clinical isolates of
E. coli and R3 is more associated with STEC strains (Gibb et al.
1992; Appelmelk et al. 1994; Currie and Poxton 1999; Amor et al.
2000). In E. coli clinical isolates, R1 is most prevalent, whilst the

K12 core is not detected (Gibb et al. 1992; Appelmelk et al. 1994).
More than 170 O-antigens have been identified and consist of
10–25 repeating units containing one to eight sugar residues
(Stenutz, Weintraub and Widmalm 2006). The O-antigen can
be present (smooth LPS, also called S-LPS or LPS I, resulting in
colonies with a smooth phenotype) or absent (rough LPS, also
called R-LPS or LPS II, resulting in colonies with a rough phe-
notype) depending on the E. coli strain; if the core region is also
absent, it is called deep-rough LPS (Hitchcock et al. 1986). Smooth
strains are the most commonly found in nature, including in
DEC, whereas the rough phenotype is more commonly found
in laboratory strains (Whitfield and Keenleyside 1995; Nataro
and Kaper 1998). For smooth strains, the LPS length is posi-
tively correlated with the force of adhesion (Strauss, Burnham
and Camesano 2009). The O-antigen assists adhesion through
hydrogen binding (Tomme et al. 1996). For example, it has been
demonstrated that the O-antigen enables EHEC O157:H7 strains
to colonise animal hosts (Sheng et al. 2008). Mutations in LPS
biosynthesis genes have been shown to affect the adhesion of
E. coli to abiotic surfaces and its biofilm formation ability (Bilge
et al. 1996; Genevaux et al. 1999; Landini and Zehnder 2002; Beloin
et al. 2006). Additionally, LPS can promote or inhibit biofilm for-
mation by two distinct mechanisms, mainly by interacting with
cell-surface-exposed adhesion factors. It has been shown that
alteration of LPS synthesis can impair type 1 pili and colanic acid
expression as well as bacterial motility, whereas the reduction in
LPS expression may unmask E. coli adhesins and thus promote
adhesion or biofilm formation as observed for EHEC O157:H7
strain (Bilge et al. 1996; Beloin et al. 2006; Beloin, Roux and Ghigo
2008).

Poly-N-acetyl glucosamine (PNAG)
PNAG is an EPS attached to the bacterial surface and is involved
in biofilm formation on abiotic surfaces (Wang, Preston and
Romeo 2004). The biosynthetic pathway for PNAG is encoded by
the pgaABCD locus (formerly ycdSRQP). Initiation of PNAG pro-
duction occurs with the PgaDC, a glycosyl transferase localised
on the cytoplasmic side of the inner membrane that uses the
UDP-N-acetyl-D-glucosamine as substrate (Wang et al. 2004; Itoh
et al. 2005, 2008). The PNAG polymer is exported and anchored to
the bacterial surface through the β-barrel formed by two outer
membrane proteins (OMPs), namely PgaB and PgaA. Although
PNAG forms a surface capsule and is one of the main compo-
nents of the caEPM in diverse bacterial biofilm, the pga locus is
not present in all E. coli strains (Cerca et al. 2007; Cimdins et al.
2017). In DEC, PNAG plays a role in the stabilisation of biofilm
architecture (Wang et al. 2004; Al Safadi et al. 2012). It has been
demonstrated to be important for biofilm formation of EHEC on
sprouts and tomato roots (Matthysse et al. 2008). In vivo expres-
sion of pgaA during infection by EHEC O104:H4 suggests that
biofilm formation is a key step in pathogenesis (Al Safadi et al.
2012). PNAG is also expressed by some ETEC strains and often
induced by conditions found in the environment (Gonzales-Siles
and Sjoling 2016).

Colanic acid
Colanic acid is a negatively charged polymer of glucose, galac-
tose, fucose, and glucuronic acid produced by most E. coli strains,
including DEC (Obadia et al. 2007). The wca operon (or cps)
encodes 19 proteins including polymerases involved in colanic
acid synthesis from sugar residues (Stevenson et al. 1996).
Colanic acid actually forms the G1 capsule but a significant por-
tion of the colanic acid produced can also be released into the
extracellular milieu to contribute to the iEPM (Whitfield and
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Roberts 1999; Beloin et al. 2008; Beloin, Roux and Ghigo 2008).
The exact contribution of colanic acid to biofilm formation is still
unclear (Matthysse et al. 2008; May and Okabe 2008). Nonethe-
less, it forms a physical barrier that helps bacteria to survive out-
side the host with the formation of a protective capsule around
the bacterial cell. This capsule allows E. coli biofilms to resist
osmotic and oxidative stresses as well as to temperature vari-
ations (Whitfield and Roberts 1999; Chen, Lee and Mao 2004). In
EHEC O157:H7, it has been shown to play a role in the bacte-
rial survival in simulated GIT fluids (Mao, Doyle and Chen 2006).
In EAEC, the presence of colanic acid has been linked with the
formation of large biofilm structures on the surface of sprouts
(Borgersen et al. 2018). In contrast, the production of colanic acid
could also mask some cell-surface adhesins and consequently
impair initial adhesion to some supports (Hanna et al. 2003;
Schembri et al. 2004; Beloin et al. 2008).

Cellulose
Cellulose is a linear homopolysaccharide composed of D-
glucopyranose units linked by β-1→4 glycosidic bonds. While
this widespread biopolymer is generally related to plant biol-
ogy, it is also present in the iEPM in some bacterial species
where it plays a role in protection, maturation and structure
of the biofilm (Solano et al. 2002; Ude et al. 2006). In E. coli, cel-
lulose biosynthesis genes are located in two operons, namely,
bcsQABZC and bcsEFG (Zogaj et al. 2001; Solano et al. 2002; Le
Quere and Ghigo 2009). The cellulose synthase is formed by
BcsAB, which catalyses cellulose biosynthesis from UDP-glucose
subunits and forms a transmembrane pore across the inner
membrane for cellulose export prior to secretion across the OM
via a β-barrel pore formed by BcsC (Keiski et al. 2010; Omadjela
et al. 2013). The role of the bcsEFG operon is still unclear but
its presence is necessary for cellulose production (Solano et al.
2002). These genes are found in both commensal and pathogenic
E. coli strains (Beloin et al. 2008). Although cellulose production
is essential for biofilm maturation, over-production negatively
impacts biofilm formation and bacterial aggregation, possibly
by coating and thus masking the adhesive properties of sur-
face proteins such as curli (Gualdi et al. 2008). In EHEC O157:H7
and EPEC O127:H6 cellulose production has been shown to con-
tribute to biofilm formation, and consequently, host colonisa-
tion and survival in different environments (Saldana et al. 2009).
The involvement of cellulose in E. coli colonisation of plant mate-
rials has also been demonstrated but it depends on the veg-
etable, as its presence seems dispensable for biofilm formation
by E. coli O157:H7 to spinach leaves, but it is required for bacte-
rial adhesion to alfalfa sprouts (Matthysse et al. 2008; Macarisin
et al. 2012). Expression of these genes in some ETEC strains is
often induced at ambient temperatures, low ionic strength and
nutrient limitation (Bokranz et al. 2005; Szabo et al. 2005).

Extracellular DNA (eDNA)

The importance of eDNA in biofilm maturation has been demon-
strated in numerous bacterial species (Muto and Goto 1986;
Kadurugamuwa and Beveridge 1995; Steinberger et al. 2002),
including E. coli (Xi and Wu 2010; Nakao et al. 2012). As a com-
ponent of the iEPM, eDNA serves as structural component of
the biofilm but can also contribute to a cation gradient, as a
nutrient source, induce antibiotic resistance and aid horizon-
tal gene transfer (Bockelmann et al. 2006; Palchevskiy and Finkel
2006; Sanchez-Torres, Hu and Wood 2011). However, the role
of eDNA in DEC strains remains to be elucidated. The molec-
ular mechanism explaining the presence of eDNA has been a
subject of investigation for some time but essentially results

from the release of genomic DNA upon cell lysis, following
the bacteriophage lytic cycle or bacterial cell apoptosis (Pal-
men and Hellingwerf 1995; Steinmoen, Knutsen and Havarstein
2002; Qin et al. 2007). Nonetheless, the lysis of outer mem-
brane vesicles (OMVs) containing DNA (Kadurugamuwa and
Beveridge 1996; Whitchurch et al. 2002), as well as DNA secre-
tion through the conjugative Type IV, subtype b, secretion sys-
tem (T4bSS) (Hamilton et al. 2005; Chagnot et al. 2013) could
also contribute to the presence of eDNA. The extent and respec-
tive contribution of these different mechanisms to the pres-
ence of eDNA would undoubtedly require further investigations,
especially in DEC, also considering the impact of the apparent
presence of pancreatic nuclease in the intestine (Maturin and
Curtiss 1977).

Cell-surface proteins

The cell surface of LPS-diderm bacteria can display a number of
proteins associated with the OM. Proteinaceous determinants
found at the bacterial cell surface and acting as SCFs can be
broadly discriminated into (i) monomeric proteins, (ii) multi-
meric proteins (Fig. 2).

In the scientific literature, E. coli adhesins have generally been
discriminated between fimbrial and afimbrial (or non-fimbrial).
However, according to animal classification, a group is much
better defined by features that are present rather than by the
absence of some features. As such, the term afimbrial adhesins
does not tell anything about the nature of these adhesins. In
addition, some afimbrial adhesins later appeared to be atyp-
ical fimbriae secreted by the same family of protein secre-
tion system, e.g. the CS31A (coli surface associated 31a anti-
gen) pili (Adams et al. 1997). For these reasons, we here pro-
pose to regroup those cell-surface proteins under the term of
monomeric proteinaceous adhesins, or monomeric proteina-
ceous colonisation factors. Besides, the term fimbriae is not very
well defined across the Bacteria kingdom when considering dif-
ferent bacterial species. On the contrary, the term pili can be
used as a generic term encompassing the various type of pili and
fimbriae, including curli or injectisome. In addition, some cell-
surface appendages contributing to surface colonisation in bac-
teria cannot be categorised as fimbrial adhesins per se, e.g. the
flagella and the trimeric autotransporters. To avoid any ambigu-
ity, these different cell-surface appendages are proposed to be
regrouped under the term of multimeric proteinaceous coloni-
sation factors.

Monomeric proteinaceous surface colonisation factors
In E. coli, monomeric protein acting as SCFs include some auto-
transporters (ATs), inverted autotransporters (IATs), and some
OMPs, but also the surface-exposed lipoprotein SslE, Efa-1 (E. coli
factor adherence 1), dispersin, as well as some moonlight-
ing proteins. Of note, the ATs (also sometimes called classi-
cal ATs) only belong to the Type V, subtype a, secretion system
(T5aSS) and correspond to monomeric polypeptides with mod-
ular organisation into at least three main regions, i.e. (i) a N-
terminal signal peptide, (ii) a central passenger and (iii) a translo-
cator at the C-terminus (Desvaux, Parham and Henderson 2003;
Desvaux et al. 2004; Leo et al. 2012). ATs (T5aSS) should not be
mistaken with the trimeric ATs, hybrid ATs and inverted ATs,
which belong the T5sSS, T5dSS and T5eSS, respectively.

Autotransporters (ATs) Classical ATs acting as SCFs comprise the
autotransporter adhesins (ATAs), the self-associating autotrans-
porters (SAATs) and some serine protease autotransporters from
Enterobacteriaceae (SPATES) (Henderson and Desvaux 2004;
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Figure 2. Schematic representation of the cell-surface proteinaceous determinants acting as CFs in DEC. Monomeric proteins are depicted in shades of red, whereas
multimeric protein complexes are depicted in shades of blue. Whenever possible, molecular structures were obtained from the protein databank (PDB) (Berman et al.

2002, Rose et al. 2017) or the electron microscopy databank (EMBD) (Lawson 2010). Regarding ATs, no structure for ATAs is currently available but Ag43 (PDB: 4KH3)
is provided as a representative of a SAAT and EspP (PDB: 3SLI, 3SZE) as a representative of SPATE. Intimin (PDB: 3NCW, 4E1S) is given as a representative of an IAT.
Proteins secreted across the OM by the T5SS are first exported via the Sec translocase (SecYEG-DF/SecA) (PDB: 2AKH, 3AQO, 5XAM) across the inner membrane (IM).
Dispersin (PDB 2JVU) is secreted via T1SS (PDB: 5066). Besides ATs, all OMPs including the Hra, OmpA (PDB: 2GE4) and Iha are first exported via Sec before being

integrated into the OM via the β-barrel assembly machinery (Bam) complex (BamABCDE) (PDB: 5LJO). The surface-associated lipoprotein of E. coli (SslE) is secreted
by a T2aSS (EMDB: 1763, PDB: 3CIO, 3OSS, 4KSR, 2W7V, 2BH1) after Sec export. Like the moonlighting proteins represented here by GAPDH (PDB: 5ZA0), the secretion
mechanisms of Efa-1 remain unknown. EibD (PDB: 2XQH) is provided as a representative of TAAs. The injectisome is secreted and assembled by the T3aSS (EMDB: 1875).
The flagellum (EMDB: 1132, 1873; PDB: 1IO1) is secreted and assembled by the T3bSS (EMDB: 1887). The T4P (EMDB: 0070) is secreted and assembled by the T2bSS. The

conjugative pilus (CP) (PDB: 5LEG) is secreted and assembled by the T4bSS (EMDB: 2567). The T1P (EMDB: 3222), CS31A, AAF (PDB: IUT2, 2XQ), CFA (EMDB: 1952), F9
pilus, ELF, LPF (PDB: 5AFO), ECP (PDB: 3QS3) and SFP are all secreted and assembled by T7SS (PDB: 4J3O) after Sec export. The curli are secreted and assembled by the
T8SS (EMDB: 2750). Hcp form a tube, which is displayed extracellularly upon triggering of the T6SS (EMDB: 2524; PDB: 4HKH, 3RX9, 4JIV).

Henderson et al. 2004; Desvaux et al. 2006; Rojas-Lopez et al.
2017).

Autotransporter adhesins (ATAs) ATAs enable direct adhe-
sion to abiotic supports, e.g. glass, stainless steel or plastic
ware and/or biotic surface, e.g. mammalian cells or extracellular
matrix (ECM) components such as collagens (Vo et al. 2017). As
such, they can also belong to MSCRAMM (microbial surface com-
ponents recognizing adhesive matrix molecules) proteins (Chag-
not et al. 2012).

In EHEC, several enterohaemorrhagic E. coli autotransporters
(Eha) have been identified (Wells et al. 2008). Among them, EhaB
has been shown to promote bacterial cells binding to laminin
and collagen I (Wells et al. 2008; Wells et al. 2009), whereas

EhaJ causes strong adherence to fibronectin, fibrinogen, colla-
gens II, III and V, and laminin (Easton et al. 2011). EhaB has also
been identified in EPEC and ETEC (Zude, Leimbach and Dobrindt
2014). Immediately adjacent to the eha gene, egtA encodes a gly-
cosyltransferase. EhaJ requires glycosylation to mediate strong
biofilm formation but not for adhesion to ECM components (Eas-
ton et al. 2011). Following genomic analysis, ehaJ appears to be
also present in EAEC, EIEC and ETEC where its function is still
unknown. In EPEC, its exact function in the colonisation process
remains unclear, as it does not seem to be required for bacte-
rial adhesion and biofilm formation (Easton et al. 2011). While
EhaD has been shown to mediate biofilm formation, its role in
bacterial adhesion has not been determined yet and its contribu-
tion to sessile development in DEC would require more in-depth
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investigation (Wells et al. 2008). In the laboratory strain E. coli K12,
the EhaD homologue YpjA has been shown to promote adhesion
to glass and polyvinyl chloride (PVC), as well as biofilm forma-
tion together with the EhaC homologue YfaL and YcgV (Roux,
Beloin and Ghigo 2005). In EHEC, however, EhaC was not shown
to promote biofilm formation (Wells et al. 2008). A homologue
of ycgV has been genetically identified in several DEC, namely,
EPEC, ETEC, EAEC and EIEC (Wells, Totsika and Schembri 2010;
Zude, Leimbach and Dobrindt 2014). Altogether, this informa-
tion emphasises the need for further experimental characteri-
sation of the adhesive functions of Eha, particularly considering
the diversity of DEC.

Some ATs originally identified in UPEC and acting
as adhesins have been identified in DEC, namely, UpaB
(uropathogenic E. coli autotransporter B) and UpaI (Zude,
Leimbach and Dobrindt 2014). From UPEC investigations, these
proteins appeared to promote adhesion to a wide range of ECM
components (Allsopp et al. 2012; Zude, Leimbach and Dobrindt
2014), whilst UpaI was further demonstrated to mediate biofilm
formation (Zude, Leimbach and Dobrindt 2014). Although the
genes are found in EPEC and STEC, none of them have been
functionally characterised in any DEC to date (Zude, Leimbach
and Dobrindt 2014).

Following genomic analysis, AatA (avian pathogenic E. coli
autotransporter A) appears to be also present in some DEC
strains (Zude, Leimbach and Dobrindt 2014). In APEC (avian
pathogenic E. coli), AatA is important for pathogenesis as it
enhanced adhesion to chicken fibroblast cells (Dai et al. 2010; Li
et al. 2010; Wang et al. 2011). However, its role and contribution
in DEC is still unknown.

Self-associating autotransporters (SAATs) SAATs are primar-
ily enable to associate to one another resulting in bacterial
cell autoaggregation (Klemm, Vejborg and Sherlock 2006). In
E. coli, the SAATs regroup ATs from the Ag43 (antigen 43), AIDA-
I (adhesin involved in diffuse adherence phenotype) and TibA
(toxigenic invasion locus b) families (Trunk, Khalil and Leo 2018).
Of note, SAATs differentiate from ATAs as they do not neces-
sarily play a role in direct adhesion to biotic or abiotic surfaces
but can nonetheless contribute directly or indirectly to surface
colonisation.

Ag43 is probably the SAAT which has triggered the most
research to date, with most of the information resulting from
investigations in the E. coli K12 laboratory strain (van der Woude
and Henderson 2008). Besides autoaggregation, Ag43 has been
demonstrated to increase biofilm formation on abiotic surfaces
(Kjaergaard et al. 2000) and adhesion to epithelial cells (Sher-
lock et al. 2006; de Luna et al. 2008) but to decrease bacterial
motility (Ulett et al. 2007a,b). The gene encoding Ag43 has been
shown to be highly expressed during the early stage of biofilm
formation (Schembri, Kjaergaard and Klemm 2003) but not in
mature biofilms (Beloin et al. 2004). While biofilm formation is
favoured by the autoaggregation phenomenon (van der Woude
and Henderson 2008), Ag43 is not involved in gut colonisation
(de Luna et al. 2008). It is also known that the expression of
pili would shield the interaction between Ag43 and thus pre-
vent the autoaggregation (Korea et al. 2010). Phylogenetic analy-
sis revealed the agn43 gene is distributed into two subfamilies,
namely, subfamily I (SF-I) and SF-II, and is only found among,
but not all, E. coli (including some Shigella spp.) (van der Woude
and Henderson 2008). It has been suggested that agn43 is more
prevalent in pathogenic E. coli strains than in commensal E. coli
strains (van der Woude and Henderson 2008). It can be detected
as a single gene copy, like in E. coli K12, or in multiple alleles, like

in EHEC O157:H7 EDL933 where two identical copies are found in
two different pathogenicity islands, namely the O-island 43 (OI-
43) and OI-48 (Torres et al. 2002). In UPEC CFT073, Ag43 is encoded
by two different alleles, namely agn43a and agn43b (Ulett et al.
2007b). Compared to the Ag43 encoded by the first allele, Ag43
from allele b had a slower autoaggregation kinetics and lower
propension for biofilm formation.

Autoaggregation results from the L-shape structure of Ag43
passenger region, which drives molecular interaction via salt
bridges and hydrogen bonds along the β-helix structure in
a molecular Velcro-like handshake mechanism (Heras et al.
2014). In E. coli O157:H7 EDL933, Ag43 was shown to promote
autoaggregation, calcium binding and biofilm formation but was
unable to mediate adhesion to epithelial cells (Torres et al. 2002).
While present in other DEC, such as EPEC, ETEC and EAEC (Zude,
Leimbach and Dobrindt 2014; Vo et al. 2017), functional char-
acterisation of Ag43 in these different pathotypes has not be
examined in details to date. Most recently, phylogenetic net-
work analysis revealed the Ag43 passengers were distributed
into four distinct classes, namely, C1, C2, C3 and C4 (Ageorges
et al. 2019). Structural alignment and modelling analyses indi-
cated the N-terminal and C-terminal regions of the passengers
belonged to two different subtypes which gave rise to these four
distinct Ag43 classes upon domain shuffling. Functional analy-
ses demonstrated that expression of Ag43 C3 (which both agn43a
and agn43b from UPEC CFT073 belong to) induced a slower sed-
imentation kinetics of bacterial cells and smaller aggregates
compared to the three other Ag43 classes (Ageorges et al. 2019).
Using prototypical Ag43 C1 from E. coli K12 MG1655, Ag43 C2 from
EHEC EDL933, Ag43 C3 from UPEC CFT073 (allele agn43b) and
Ag43 C4 from ETEC H10407, it appeared that heterotypic inter-
actions occurred in a very limited number of cases compared to
homotypic interactions. This ability of Ag43 variants to specif-
ically identify genetic copies of themselves in other bacterial
cells through Ag43-Ag43 interactions further suggests a green-
beard effect (Gardner and West 2010; Wall 2016), the ecophysio-
logical relevance of which undoubtedly require further investi-
gation (Ageorges et al. 2019).

AIDA-I is involved in the diffuse adherence of DEC strains
(Benz and Schmidt 1989; Benz and Schmidt 1992) and also in
bacterial autoaggregation, biofilm formation and adherence to a
wide range of human and non-human cells (Benz and Schmidt
1989; Sherlock et al. 2006). While the function of AIDA-I is quite
similar to Ag43, they clearly belong to different protein families
(Vo et al. 2017). The gene encoding AIDA-I is especially preva-
lent in ETEC and STEC strains from porcine origin, which sug-
gests pork as a main animal reservoir for this gene (Niewerth
et al. 2001; Ha et al. 2003). In EPEC, the AIDA-I gene (aidA) is asso-
ciated with aah which encodes a 45-KDa heptosyltransferase
(Benz and Schmidt 2001). These genes are plasmid located and
transcribed as bicistronic mRNA, but their expression seems to
be restricted to a small number of DEC strains (Owen et al. 1996;
Sherlock et al. 2004). Aah (adhesin associated heptosyltrans-
ferase) modifies the AIDA-I by addition of 19 heptose residues on
average, which enables EPEC to adhere to human cells (Benz and
Schmidt 1992; Benz and Schmidt 2001; Laarmann and Schmidt
2003; Schembri, Dalsgaard and Klemm 2004). In EHEC O157:H7,
though, AIDA-I does not play a role in adherence to cultured cells
or to pig intestinal epithelial cells (Yin et al. 2009). This suggests
different subfamilies or classes of AIDA-I could exist as observed
for Ag43, which would require further in-depth investigation.

TibA has been found to self-aggregate, promote biofilm for-
mation and facilitate colonisation of the intestinal epithelia
(Sherlock, Vejborg and Klemm 2005; Cote and Mourez 2011). In
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ETEC, TibA is encoded by the tib operon, which also encodes the
glycosyltransferase TibC (Lindenthal and Elsinghorst 1999). Gly-
cosylation of TibA is important for its function since its ung-
lycosylated form is less stable and cannot oligomerise prop-
erly and in turn cannot promote bacterial adhesion to epithe-
lial cells (Cote, Charbonneau and Mourez 2013); nonetheless,
it can autoaggregate, promote biofilm formation and cell inva-
sion. Interestingly, TibA, AIDA-I and Ag43 have been reported to
interact with one another resulting in the formation of mixed
bacterial aggregates (Klemm, Vejborg and Sherlock 2006). These
interesting findings deserve further in-depth characterisation,
especially with regards to recent findings where the interactions
between Ag43 variants appears quite specific (Ageorges et al.
2019).

In E. coli O157:H7, EhaA has been shown to mediate autoag-
gregation and adhesion to primary epithelial cells derived from
the bovine terminal rectum, as well as biofilm formation (Wells
et al. 2008). As such, EhaA can be considered as an additional
member of SAAT also found in EAEC, EPEC and ETEC (Vo et al.
2017). Similarly, UpaC was reported to promote autoaggrega-
tion, as well as biofilm formation (Zude, Leimbach and Dobrindt
2014). UpaC is found in a wide range of InPEC (Zude, Leimbach
and Dobrindt 2014). Of note, some ATAs such as UpaI can fur-
ther promote autoaggregation to some extent (Zude, Leimbach
and Dobrindt 2014).

Serine protease autotransporters from enterobacteriaceae
(SPATEs) SPATEs correspond to a subfamily of protease auto-
transporters that specifically exhibit a serine protease domain
(IPR034061) in the passenger region (Rojas-Lopez et al. 2017).
While their primary function is associated with the degrada-
tion of various proteins, such as mucin or haemoglobin, they
can contribute to bacterial virulence via their cytotoxic effect,
and some can even be involved in bacterial colonisation (Dautin
2010).

In EHEC, EspP (extracellular serine protease plasmid-
encoded), also known as PssA (protein secreted by Stx-producing
E. coli), contributes to biofilm formation, bacterial adherence to
intestinal epithelial cells, including bovine primary rectal cells
and colonisation of the bovine intestine (Dziva et al. 2007; Put-
tamreddy, Cornick and Minion 2010; Farfan and Torres 2012).
EspP is encoded on the pO157 plasmid and can be found in
diverse STEC isolates (van Diemen et al. 2005; Dziva et al. 2007;
Ruiz-Perez and Nataro 2014). At the bacterial cell surface, EspP
passenger domains self-assemble to form supramolecular struc-
tures, called ropes (Xicohtencatl-Cortes et al. 2010). Besides cyto-
pathic activities, the EspP ropes have strong adhesive properties
to host epithelial cells and can further serve as a substratum for
bacterial adherence and biofilm formation. Similar observations
have also been made for EspC from EPEC (Xicohtencatl-Cortes
et al. 2010).

In EAEC, Pic (protein involved in colonisation) is involved in
mucin degradation but also directly in mucin binding (Gutierrez-
Jimenez, Arciniega and Navarro-Garcia 2008; Andrade et al.
2017). It thus participates in intestinal colonisation and may
also be involved in bacterium-mucus biofilm (Navarro-Garcia
and Elias 2011). Pic is also expressed by the hybrid EHEC/EAEC
E. coli O104:H4 but its exact contribution to the colonisa-
tion process in this genetic background remains to be ascer-
tained (Henderson et al. 1999; Harrington et al. 2009; Abreu
et al. 2015; Abreu et al. 2016). Of note, Shmu is a mucinase
identical to Pic found in Shigella (Rajakumar, Sasakawa and
Adler 1997).

Inverted autotransporters (IATs) In IATs, which correspond to the
Type V, subtype e, secretion system (T5eSS), the translocator
is located in the N-terminal region and the passenger at the
C-terminal, which is the opposite of the modular organisation
found in ATs (Tsai et al. 2010; Oberhettinger et al. 2012). In DEC,
there are several IATs acting as SCFs, namely, intimin, FdeC (Fac-
tor adherence of E. coli) and YeeJ. More recently, additional IATs
have been identified in E. coli, where iatA appeared quite preva-
lent but the functional characterisation of the gene product is
still awaited (Goh et al. 2019). IatB, IatC and IatD from an environ-
mental E. coli strain were further shown to be involved in strong
biofilm formation when overexpressed in a recombinant E. coli
K12 background, but not in autoaggregation nor adhesion to ECM
proteins (Goh et al. 2019). While identified in several DEC, their
role and contribution in their native genetic background is still
unknown.

Intimin Intimin is the prototypical member of IATs (Leo, Grin
and Linke 2015). In EPEC and EHEC, the intimin is encoded by the
eae (for E. coli attachment effacement) gene in the locus of ente-
rocyte effacement (LEE) (Nataro and Kaper 1998). This protein
interacts specifically with its receptor Tir (translocated intimin
receptor) allowing the establishment of the intimate attachment
of the bacteria with the host cell, pedestal formation and attach-
ing/effacing lesions (A/E) (Schmidt 2010). In addition, intimin
contributes to intestinal colonisation in a Tir-independent man-
ner (Mallick et al. 2012). Intimin may also bind to alternative
receptors such as β1 integrins or nucleolin but this remains to
be clarified (Liu, Magoun and Leong 1999; Leo et al. 2015).

Factor adherence of E. coli (FdeC) FdeC is a widespread IAT in
E. coli and present in all DEC pathotypes (Nesta et al. 2012; Easton
et al. 2014). In EHEC O26:H11, FdeC was shown to contribute to
biofilm formation and potentially in colonisation of the terminal
rectum of cattle (Easton et al. 2014).

YeeJ More recently, the gene encoding YeeJ has been reported
to be present in some DEC, namely, EHEC, EPEC, ETEC and EIEC
(Martinez-Gil et al. 2017). In E. coli K12, this IAT has been shown to
participate in biofilm formation. While YeeJ exists into two dis-
tinct variants of different lengths, no functional difference could
be detected between them. However, the contribution of YeeJ to
biofilm formation in DEC remains to be established.

Other outer membrane proteins (OMPs) Besides ATs and IATs, sev-
eral additional monomeric OMPs can act as SCFs in DEC, namely,
OmpA, Hra (Heat-resistant agglutinin), and Iha (Iron-regulated
protein A homologue adhesin). OMPs are integrated to the OM
via the β-barrel assembly machinery (Bam) complex (Leyton,
Belousoff and Lithgow 2015; Botos, Noinaj and Buchanan 2017;
Schiffrin, Brockwell and Radford 2017).

Outer membrane protein A (OmpA) While originally considered
as a pore forming protein (Sugawara and Nikaido 1992), whether
the OmpA β-barrel offers a channel for the continuous passage
of water or solutes remains controversial (Smith et al. 2007).
Nowadays, OmpA is rather viewed as a multifaceted protein
with functions of an adhesin as well as an invasin. In EHEC
O157:H7, OmpA is involved in adhesion to intestinal epithelial
cells (Torres and Kaper 2003; Kudva et al. 2015). OmpA further
appears to be the key molecular determinant for bacterial adhe-
sion to plant surfaces, such as alfalfa sprouts (Torres et al. 2005).
The role of OmpA as an invasin was demonstrated in NMEC
(Prasadarao et al. 1996) but remains to be established in DEC.
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Interestingly, OmpA can be encoded by at least two different
alleles, namely ompA1 and ompA2 (Power et al. 2006). Many of
the interaction properties of OmpA emanate from protein loops
external to the OM, which are displayed on the bacterial cell sur-
face (Smith et al. 2007); in the two alleles, differences in these
regions could influence the adhesin and/or invasin properties of
the protein. Of note, OmpA further serves as a receptor for bac-
teriophages and bacteriocins (Smajs, Pilsl and Braun 1997; Power
et al. 2006). Regarding biofilm formation, the direct contribution
of OmpA remains controversial; while OmpA from E. coli K12 has
been shown to bind to abiotic surfaces and to significantly influ-
ence biofilm formation (Lower et al. 2005; Barrios et al. 2006), the
role of OmpA in EHEC O157:H7 biofilm formation appears to be
minor and it acts rather as a modulator than a contributor to
sessile development (Torres et al. 2005; Kudva et al. 2015). Keep-
ing in mind that OmpA is an important contributor to the struc-
tural integrity of the bacterial cell envelope by bridging the OM
and cell wall, along with lipoproteins (Wang 2002), the interpre-
tations of phenotypes from OmpA mutants must be considered
with caution due to possible pleiotropic effects that can be con-
founding. Further investigations on these various aspects are
clearly needed, and in particular the allelic variation of OmpA
should also be more carefully considered to decipher their exact
role.

Heat-resistant agglutinin (Hra) The Hra family of OMPs were
first described with Hek (haemagglutinin from E. coli K1) in
NMEC, where it was reported to promote autoaggregation, inter-
actions with human erythrocytes and epithelial cells, as well as
adhesion to, and invasion of epithelial cells (Fagan and Smith
2007). Hek was originally identified because of its homology with
Tia (toxigenic invasion protein A) (Bhargava et al. 2009). In ETEC,
Tia mediates attachment to intestinal epithelial cells as well as
their invasion (Fleckenstein et al. 1996; Sjoling, von Mentzer and
Svennerholm 2015). It also appears to bind several mammalian
heparan sulphate binding proteins suggesting, that ETEC use
these ubiquitous cell surface heparan sulphate proteoglycans
as receptors to adhere and invade host epithelial cells (Fleck-
enstein, Holland and Hasty 2002).

In EAEC O42, Hra1 (heat-resistant agglutinin 1) was demon-
strated to be responsible for autoaggregation and aggregative
adherence, as well as biofilm formation (Bhargava et al., 2009).
While these observations were made upon protein expression
in nonadherent and nonpathogenic laboratory E. coli strains, an
EAEC 042 hra1 deletion mutant was not deficient in these pheno-
types, indicating that Hra1 is an accessory colonisation factor in
this genetic background. While hra1/hek was originally consid-
ered absent from DEC but restricted to UPEC, NMEC and sepsis
E. coli (Dobrindt et al. 2002; Cooke et al. 2010), it later became clear
that hra1 and tia are common among DEC, especially EAEC but
also EPEC (Fleckenstein et al. 1996; Mancini et al. 2011). In the
EAEC strain 60A, Hra2 it is not involved in autoaggregation or
invasion, but only in adherence to epithelial cells (Mancini et al.
2011); its involvement in bacterial adhesion to abiotic supports
and biofilm formation remains to be elucidated. The prevalence
of hra2, however, seems to be very low among DEC.

More recently, a novel member of the Hra family has been
identified in STEC, namely, Hes (Hemagglutinin from shigatoxin-
encoding E. coli) (Montero et al. 2017). Hes was shown to promote
autoaggregation and biofilm formation as well as erythrocyte
agglutination and adherence to epithelial cells, but not invasion.
The gene was observed to be present in LEE-negative STEC but
not LEE-positive STEC (Montero et al. 2017).

Iron-regulated protein A homologue adhesin (Iha) Iha is an
adherent-conferring protein homologous to IrgA (iron-regulated
protein A) found in Vibrio cholerae (Tarr et al. 2000). As well as
a β-barrel structure enabling membrane anchoring as in any
OMP, Iha has externally exposed domains. Rather than localised
adherence, Iha confers a diffuse adherence pattern in E. coli
O157:H7. Besides STEC, iha has been identified in EPEC and UPEC
(Szalo et al. 2002; Kanamaru et al. 2003; Gomes et al. 2011). In
UPEC, Iha was shown to further act as a catecholate siderophore
receptor (Herold et al. 2009) and a virulence factor (Johnson et al.
2005) but these roles in DEC remain to be established. In EHEC,
Iha has been clearly demonstrated to be involved in intesti-
nal colonisation and contribute to pathogenesis by promoting
adherence to the intestinal epithelium (Yin et al. 2009).

Secreted and surface-associated lipoprotein of E. coli (SslE) SslE, for-
merly known as YghJ (Yang et al. 2007; Iguchi et al. 2009), was
recently described as a novel E. coli mucinase thanks to its zinc
metallopeptidase motif (Luo et al. 2014; Nesta et al. 2014). This
protein is secreted by a Type II, subtype a, secretion system
(T2aSS) but the molecular mechanisms of its maturation as a
surface lipoprotein remains unclear. The gene encoding SslE is
present in different DEC pathotypes such as EPEC, ETEC and
EHEC (Decanio, Landick and Haft 2013). In EPEC, SslE was shown
to mediate biofilm formation and intestinal colonisation (Baldi
et al. 2012; Vermassen et al. 2019). This protein can be divided
into two main variants and antibodies raised against variant I
(from ExPEC strain IHE3034) are able to inhibit translocation of
E. coli strains through a mucin-based matrix. In addition, immu-
nisation of animals with SslE I significantly reduces gut coloni-
sation by strains of different pathotypes expressing SslE II (Nesta
et al. 2014). These observations make SslE a key factor in E. coli
colonisation of the mucosal surface in humans and could serve
as a component for a protective vaccine against DEC (Naili et al.
2016; Naili et al. 2017; Rojas-Lopez et al. 2018; Rojas-Lopez et al.
2019).

E. coli factor adherence 1 (Efa-1) Efa-1, also known as LifA (lym-
phostatin A), present in EPEC and some non-O157 EHEC strains,
is known to inhibit the proliferation of mitogen-activated lym-
phocytes and the synthesis of proinflammatory cytokines and
gamma interferon (Klapproth et al. 2000; Abu-Median et al. 2006).
Efa-1 has been shown to mediate colonisation of the calf intes-
tine independently of glycotransferase and cysteine protease
motifs (Deacon et al. 2010). In EHEC O157 strains, ToxB is homol-
ogous to Efa-1 and appears to contribute to adherence to cul-
tured epithelial intestinal cells (Tatsuno et al. 2001). However,
no lymphostatin-like activity has been associated with this pro-
tein and it is not involved in intestinal colonisation in animal
models (Stevens et al. 2004; Abu-Median et al. 2006). While Efa-1
has an extracytoplasmic domain and is presumably cell-surface
exposed (Nicholls, Grant and Robins-Browne 2002), the molecu-
lar mechanisms at play for its secretion and cell-surface display
remain unknown.

Dispersin Dispersin is an anti-aggregation protein (Aap) involved
in the spreading of bacterial cells along the host intestinal
mucosa (Sheikh et al. 2002). This protein contributes to adher-
ence and colonisation of EAEC by preventing hyper-aggregation
and collapse of AAF (aggregative adherence fimbriae). Dispersin
is present at the bacterial cell-surface via binding to LPS in a
non-covalent manner after secretion through a Type I secre-
tion system (T1SS) (Velarde et al. 2007). This secretion system
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and cognate-secreted protein are encoded in the aat (aggrega-
tive ABC transporter) locus located in the pAA plasmid of some
EAEC (Nishi et al. 2003). Dispersin is also present in some STEC
strains (Monteiro et al. 2009; Muniesa et al. 2012).

Moonlighting proteins At the bacterial cell surface of E. coli, some
unexpected proteins primarily known to be localised in the
cytoplasm have been reported. Among these unexpected cell
surface proteins, glycolytic enzymes are frequently uncovered
(Henderson and Martin 2011). These so-called moonlighting pro-
teins have been demonstrated to exhibit a secondary function
at the bacterial cell-surface, completely unrelated to their pri-
mary function in the cytoplasm (Khan et al. 2014). As a common
glycolytic enzyme frequently found at the bacterial cell surface,
GAPDH (glyceraldehyde 3-phosphate dehydrogenase) has been
demonstrated to bind plasminogen and fibrinogen in EHEC and
EPEC (Egea et al. 2007); although there is no evidence of GAPDH
acting directly as a plasminogen activator (Coleman and Benach
1999; Seidler 2013). In addition, GAPDH is clearly involved in
adhesion to intestinal epithelial cells upon infection. A common
theme for moonlighting proteins present at the bacterial cell
surface is that these proteins lack a N-terminal signal peptide for
translocation across the CM and the protein secretion systems
enabling their translocation across the OM are often unknown,
which is covered by the generic term of non-classical protein
secretion (Bendtsen and Wooldridge 2009; Desvaux et al. 2009b).
For GAPDH, though, it has been strongly suggested to occur via
piggybacking through the Type III, subtype a, secretion system
(T3aSS) (Aguilera et al. 2012). While it is also known that eno-
lase can also be extracellularly located in E. coli (Boel et al. 2004),
its contribution to bacterial adhesion remains to be determined.
The elongation factor Tu (EF-Tu) is also found at the bacterial
cell surface and has been reported to be involved in bacterial
aggregation (Amimanan et al. 2017). In DEC, the contribution of
putative moonlighting glycolytic enzymes and other moonlight-
ing proteins to the colonisation process deserves more thorough
investigation.

Multimeric proteinaceous surface colonisation factors
Multimeric protein complexes acting as SCFs can be classi-
fied as (i) homooligomeric proteins, namely, the trimeric auto-
transporter adhesins (TAAs) and (ii) cell-surface supramolecular
structures, including flagella and numerous pili.

Trimeric autotransporter adhesins (TAAs) TAAs are characterised
by the presence of a short translocator domain, which is func-
tional upon homotrimeric assembly and corresponds to the Type
V, subtype c, secretion system (T5cSS) (Cotter, Surana and St
Geme 2005; Leo, Grin and Linke 2012). In DEC, TAAs include UpaG
(UPEC autotransporter G), Eib (E. coli immunoglobulin-binding
protein), Sab (STEC-autotransporter mediating biofilm forma-
tion) and Saa (STEC autoagglutinating adhesin).

UPEC autotransporter G (UpaG) While UpaG was originally
identified in UPEC, it was also found in the EAEC 042 strain (Zude,
Leimbach and Dobrindt 2014). UpaG is involved in autoaggrega-
tion, biofilm formation, adhesion to fibronectin and laminin, as
well as human epithelial cells (Valle et al. 2008). In EHEC, EhaG
(EHEC autotransporter G) is a positional orthologue of UpaG,
which is also involved in autoaggregation, biofilm formation,
adhesion to laminin, fibronectin and collagens I, II, II and IV as
well as some epithelial cells (Valle et al. 2008; Totsika et al. 2012;
Zude, Leimbach and Dobrindt 2014). The gene encoding EhaG

has been also identified in a wide range of DEC including EPEC,
EIEC, ETEC and EAEC (Zude, Leimbach and Dobrindt 2014).

E. coli immunoglobulin-binding protein (Eib) Eibs were origi-
nally characterised for their ability to bind immunoglobulin frac-
tions, especially to the Fc (fragment crystallisable) region of IgA
and IgG (Sandt and Hill 2000; Sandt and Hill 2001; Leo and Gold-
man 2009); up to seven different Eibs have been identified to
date, namely, EibA, B, C, D, E, F and G. In LEE-negative STEC O91,
it further appeared that EibG is involved in adherence to epithe-
lial cells in a chain-like adhesion (CLA) pattern (Lu et al. 2006).
CLA corresponds to the formation of a long chain cell aggre-
gate, which EibG induces on both human and bovine intesti-
nal epithelial cells. The gene encoding EibG is distributed into
21 different alleles clustered into three eibG subtypes, namely,
eibG-α, -β and -γ (Merkel et al. 2010). While EibG-α and EibG-β
are responsible for the typical CLA phenotype, EibG-γ induces
adherence in much shorter cell chains and smaller cell aggre-
gates, corresponding to an atypical CLA. EibD has been further
shown to promote autoaggregation and biofilm formation (Leo
et al. 2011). Considering their structural similarity, other Eibs
have been suggested to have similar biological functions but
experimental confirmation is still required to ascertain this. Eib
genes are found in some STEC strains, as well as some E. coli
commensal strains (Lu et al. 2006).

STEC-autotransporter mediating biofilm formation (Sab) Sab
contributes to the diffusive adherence of STEC to human epithe-
lial cells and biofilm formation to abiotic surfaces (Herold, Paton
and Paton 2009; Farfan and Torres 2012). Genes encoding Sab are
especially present in LEE-negative STEC.

STEC autoagglutining adhesin (Saa) Saa promotes adhesion
to HEp-2 cells in a semilocalised adherence pattern (Paton et al.
2001). So far, the saa gene has only been reported in some STEC,
including some LEE-negative EHEC strains (Paton and Paton
2002; Jenkins et al. 2003; Monaghan et al. 2011).

Cell-surface supramolecular structures Flagella and pili are
organelles resulting from the supramolecular assembly of
different protein subunits to form heteromultimeric protein
complexes on the bacterial cell-surface.

Flagella Flagellar components are secreted and assembled via
the Type III, subtype b, secretion system (T3bSS) and more than
50 genes divided in three hierarchical classes are involved in the
flagellar apparatus formation (Young, Schmiel and Miller 1999;
Chilcott and Hughes 2000). The main component of the flagel-
lum filament is the flagellin, which has considerable diversity
in ultrastructure and is responsible for the H-antigen variability
(H1 to H56) (Zhou et al. 2015). In E. coli, the flagellation is per-
itrichous but the sites of cell surface localisation and the num-
ber of flagella (typically around 6–10) are considered random
(Macnab 1987a, 1987b). Nonetheless, it must be stressed that
when swimming, the flagella in motion coalesce into an undu-
lating bundle, forming one rigid helical ponytail about 14 nm
in diameter and 10 μm long that appears as polarly localised
in E. coli (Bray 2001). A swimming bacterial cell has a run-and-
tumble behaviour, where it progresses linearly (run) and then
changing abruptly in direction (tumble), but also slow-random-
walk behaviour, where it moves at a relatively low speed (Qu
et al. 2018). Upon chemotaxis, the rotational direction of the
flagella motor can be switched to control motility, a factor that

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/44/3/314/5815079 by guest on 01 O
ctober 2023



326 FEMS Microbiology Reviews, 2020, Vol. 44, No. 3

might help approaching the intestinal mucosa in a more coor-
dinated movement (Kitao and Hata 2018; Rossi et al. 2018). The
approach to the surface is an important step towards initial
bacterial adhesion and subsequent sessile development. Active
motility involving the flagella allows the bacterial cells to over-
come repulsive electrostatic and hydrodynamic forces at the
adhesion site (Donlan 2002).

Besides swimming, flagella can participate in an alternative
type of motility called swarming where bacterial cells move and
spread on a surface (Kaiser 2007). Swarming directly contributes
to the surface colonisation process and is associated with the
expression of an alternative system, the lateral flagella (Merino,
Shaw and Tomas 2006). In EAEC O42, the Flag-2 locus encodes
such a system (Ren et al. 2005), although, a mutation frameshift
has likely inactivated this system in this strain. Nonetheless,
the Flag-2 cluster appeared to be present in about 20% of E. coli
strains from the ECOR collection. In the environmental strain
E. coli SMS-3-5, although the Flag-2 gene cluster is complete and
intact, swarming motility could not be observed (Fricke et al.
2008); to date, the functionality of this system in E. coli remains
to be elucidated. In the absence of polar flagella, E. coli is not as
efficient at surface colonisation but is still considered a temper-
ate swarmer, enabling it to swarm over surfaces with rheology
corresponding to 0.5%–0.8% agar (in comparison to ≥1.5% agar
for robust swarmers) (Partridge and Harshey 2013).

Besides motility, flagella can directly act as adhesins, as
shown in EPEC, where they are involved in adhesion to epithe-
lial cells (Giron et al. 2002; Cleary et al. 2004). In EAEC, flag-
ella contribute to adhesion to plant leaves (Berger et al. 2009).
In EHEC, the flagellin FliC favours initial attachment, adhesion
to epithelial cells and biofilm formation on abiotic surfaces as
well as spinach leaves (McNeilly et al. 2008; Mahajan et al. 2009;
Xicohtencatl-Cortes et al. 2009; Vikram et al. 2013; Nagy et al.
2015). In ETEC, flagella contribute to bacterial adhesion to salad
leaves and intestinal epithelial cells, as well as biofilm formation
(Shaw et al. 2011; Duan et al. 2012; Zhou et al. 2013; Zhou et al.
2014). Interestingly, in this pathotype, flagella can also medi-
ate indirect adhesion through EtpA (ETEC two-partner secretion
protein A), a protein secreted by a T5bSS (two-partner secre-
tion system), which bridges the flagella with host cell recep-
tors, thus allowing bacterial cell attachment to some epithelial
cells and mucin-expressing regions in mouse small intestinne
(Fleckenstein et al. 2006; Roy et al. 2009). In EHEC and EPEC,
the adhesion of H6 and H7 flagella to the intestinal epithelium
and epithelial cells has been suggested to occur though mucins
(Giron et al. 2002; Mahajan et al. 2009) as reported for H1 flag-
ella from the probiotic E. coli Nissle 1917 (Troge et al. 2012). In
some EHEC/STEC strains, namely LEE-negative EHEC O113:H21
and STEC O139:H1:F18ab strains, flagella can also contribute to
bacterial invasion of intestinal epithelial cells but the molecu-
lar mechanisms at work remains to be clarified (Luck et al. 2006;
Rogers et al. 2012; Duan et al. 2013). These latter aspects would
undoubtedly deserve further in-depth investigation.

While different flagellin variants have been shown to be
involved in direct binding to host cells, such as H1 and H19
flagella in ETEC (Duan et al. 2012; Duan et al. 2013), systematic
analysis of the colonisation properties of all of the different H-
antigens in E. coli has not been investigated as yet. Except for
EIEC which are generally considered as nonmotile (Nataro and
Kaper 1998), the contribution of flagella as a motility factor over
an adhesion factor in the colonisation processes has not been
clearly resolved as of yet in DEC, particularly regarding bacte-
rial adhesion and biofilm formation to biotic and abiotic surfaces
(Wood et al. 2006; Servin 2014).

Pili Pili, also referred to in the E. coli literature as fimbriae, are
key actors during the initial attachment of bacteria to surfaces,
which is characterised by a stronger and longer interaction cou-
pled with a decrease of bacterial motility (Pruss et al. 2006).
While binding can be considered reversible as evidenced for the
chaperon-usher fimbriae to lectin (Hultgren et al. 1989; Lin et al.
2002), bacterial binding can also be very strong due to the numer-
ous pili expressed simultaneously by a single cell creating an
avidity effect, as well as the flexibility of the stalk itself (Ander-
sson et al. 2006). These pili can be secreted and assembled by
different protein secretion systems, namely, the Type II, subtype
c (T2cSS), Type III, subtype a (T3aSS), Type IV, subtype b (T4bSS),
Type VII (T7SS) or Type VIII (T8SS) secretion systems (Figure 2). It
should be stressed that this numerical protein secretion nomen-
clature was intended and restricted to the LPS-diderm bacte-
ria in the first place (Desvaux et al. 2009a). In mycolate diderm
bacteria (archetypical acid-fast bacteria, namely, mycobacteria)
and some parietal monoderm bacteria, the ESX (ESAT-6) sys-
tem involved in protein export across the IM (or cytoplasmic
membrane) was also termed T7SS, which is (i) misleading when
considering that no ESX component enabling protein translo-
cation across the mycolic outer membrane has yet been iden-
tified (Converse and Cox 2005; Bitter et al. 2009; Groschel et al.
2016; Bosserman and Champion 2017; Unnikrishnan et al. 2017;
Vaziri and Brosch 2019) and (ii) a misnomer with respect to both
the bacterial export systems (and especially parietal monoderm
bacteria), which do not follow the numerical nomenclature (e.g.
Sec or Tat), and the numerical nomenclature for protein secre-
tion systems in LPS-diderm, which is primarily based on the
presence of a translocon at the OM (Desvaux et al. 2004; Desvaux
et al. 2009a,b Sutcliffe 2011). In diderm bacteria, the ESX is truly
an export system in the same line than the Sec or Tat systems
(van der Woude, Luirink and Bitter 2013) but not a secretion sys-
tem per se. In the present review, the T7SS refers exclusively to
the chaperone-usher pathway in LPS-diderm bacteria (Desvaux
et al. 2009a,b; Chagnot et al. 2013; Abby et al. 2016; Gagic et al.
2016; Monteiro et al. 2016), which is the main pathway respon-
sible for the secretion of a wealth of pili in E. coli (Wurpel et al.
2013). Of note, P pili have been well investigated in UPEC infec-
tion (Kuehn et al. 1992; Lillington, Geibel and Waksman 2014;
Behzadi 2020) but their prevalence in DEC and potential contri-
bution (or not) in diarrhoeic infection is much less documented
although they contribute to intestinal colonisation of commen-
sal E. coli (Nowrouzian, Wold and Adlerberth 2001) and have been
detected in some strains causing bovine diarrhoea (Dozois et al.
1997).

The injectisome The injectisome is a bacterial molecular
syringe assembled and secreted by the T3aSS (Desvaux et al.
2006; Galan and Waksman 2018). The injectisome forms a nee-
dle, which is functionally closer to the Hrp (hypersensitive
response and pathogenicity) pilus in Pseudomonas syringae than
to a flagellum (He and Jin 2003; Tampakaki et al. 2004; Cornelis
2006). This cell-surface appendage can vary in size depending on
the bacterial species and even bacterial strains (Cornelis 2006);
in a controlled process, the pilus length can further adapt for
cell surface contact. In DEC, this peculiar pilus is encoded by
genes located in the LEE pathogenicity island (McDaniel, Don-
nenberg and Kaper 1995), a landmark for all EPEC but is also
present in some EHEC strains (namely, the LEE-positive strains),
such as E. coli O157:H7, and EIEC (including Shigella spp.) (Hueck
1998; Galan and Wolf-Watz 2006; Coburn, Sekirov and Finlay
2007). Tir (translocated intimin receptor) is encoded by the tir
gene located in the LEE and is injected in the host cell by the
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injectisome (Hueck 1998). This protein is then exposed at the
host cell surface and serves as the receptor for the intimin,
enabling intimate bacterial interaction with the intestinal
epithelia (Donnenberg et al. 1993; Liu et al. 1999). In EPEC, the
injectisome is involved in cell adhesion and pedestal forma-
tion that occurs during the formation of attaching and effacing
lesions upon actin rearrangement in the infected eukaryotic cell
(A/E) (Wong et al. 2011). Of note, while A/E lesions are observed
in vitro from infected epithelial cell cultures or colonic epithe-
lium with LEE-positive EHEC (Lewis et al. 2015), these kinds of
lesions are never observed from clinical samples of EHEC infec-
tions (Nataro and Kaper 1998); a clear explanation of why this
is the case is unclear but would undoubtedly deserve further
investigation to match up lab experiments with clinical obser-
vations (Lewis et al. 2015). In addition to the infection of mam-
malian cells, the injectisome is involved in adhesion to plants
with a marked tropism for the stomata (Schroeder and Hilbi
2008; Shaw et al. 2008; Berger et al. 2010; Croxen et al. 2013).
EspA, the main component of the filament in the injectisome is
directly involved in adhesion, as well as in biofilm formation, in
EPEC (Knutton et al. 1998; Moreira et al. 2006). In EIEC, the injec-
tisome contributes to the invasion capabilities (Hueck 1998).

Type 4 pili (T4P) T4P are assembled and secreted by the T2cSS
(Ramer et al. 2002; Chagnot et al. 2013). T4P have been demon-
strated to play a role in several E. coli pathotypes, including
host cell adherence and bacterial aggregation (Craig, Pique and
Tainer 2004). Some of these pili can exhibit a unique feature
in their ability to extend and retract, which results in twitch-
ing motility further contributing to biofilm formation (Mattick
2002; Craig, Forest and Maier 2019). In EPEC, T4P are also known
as BFP (bundle-forming pili) and their subunits assemble in a
helical manner to form polymeric fibres and can further inter-
act to create higher-order bundles or tangled aggregates (Gilt-
ner, Nguyen and Burrows 2012; Melville and Craig 2013). These
T4P are involved in the colonisation of the GIT and contribute
to bacterial virulence (Bieber et al. 1998; Tacket et al. 1998). BFP
are encoded by the bfp operon comprising of 14 genes, including
bfpA, which encodes the major repeating subunit of the pilus
fibre (Ramer, Bieber and Schoolnik 1996; Sohel et al. 1996). In
EHEC strains, the T4P are called HCP (haemorrhagic E. coli pili)
(Xicohtencatl-Cortes et al. 2009). Inactivation of the hcpA gene in
EHEC O157:H7 reduces adherence to human and bovine epithe-
lial cells. HCP is also able to bind to fibronectin and laminin,
to agglutinate rabbit red blood cells, to mediate biofilm for-
mation and to promote twitching motility (Xicohtencatl-Cortes
et al. 2009). HCP are also encoded in some STEC strains (Far-
fan and Torres 2012). Because of their size, peculiar T4P called
longus pili have been reported in ETEC (Giron, Levine and Kaper
1994). The N-terminal part of the major subunit LngA is homol-
ogous with Bfp of EPEC, CofA subunit of CFA/III (colonisation
factor antigen) of ETEC and TCP (the toxin-coregulated pilin)
of V. cholerae (Giron et al. 1995; Gomez-Duarte and Kaper 1995).
Longus pili are involved in colonisation of the human gut (Clav-
ijo, Bai and Gomez-Duarte 2010; Mazariego-Espinosa et al. 2010),
in bacterium–bacterium interaction and resistance to antimi-
crobial agents as a result of biofilm formation (Clavijo, Bai and
Gomez-Duarte 2010).

Conjugative pili (CP) CP are assembled and secreted through
T4bSS (Lawley et al. 2003). Classically, the genes encoding for
F-plasmid transfer are encoded on the tra operon located in
the conjugative F plasmid (Manwaring, Skurray and Firth 1999).
CP are responsible for nucleoprotein transfer between a donor

bacterial cell (harbouring the F plasmid) and a recipient bacte-
rial cell via the T4bSS (Lawley et al. 2003). Bacterial conjugation
is a well-known process enabling horizontal transfer of genes
including virulence or colonisation factors (Manwaring, Skurray
and Firth 1999; Mazel and Davies 1999; Llosa et al. 2002; Sorensen
and Mortensen 2005). Gene transfer is especially promoted in
biofilm where physical contact between sessile donor and recip-
ient cells is favoured (Lebaron et al. 1997; Hausner and Wuertz
1999; Dionisio et al. 2002; Molin and Tolker-Nielsen 2003; Maeda
et al. 2006). Besides the transfer of genetic material, CP can be
directly involved in bacterial adhesion (Beloin et al. 2008; May
and Okabe 2008; May, Tsuruta and Okabe 2011). In biofilm, this
can be further amplified as cells carrying a conjugative F plas-
mid promote the establishment of F pili mating pairs and conse-
quently induce adhesion and biofilm formation between abiotic
surfaces and poor biofilm former cells. EAEC strains expressing
F pili have been demonstrated to improve mixed biofilm forma-
tion (Pereira et al. 2010). In EAEC C1096, pili encoded on the con-
jugative plasmid Incl1 further contributed to adherence to abi-
otic surfaces and epithelial cells (Dudley et al. 2006b). In EHEC
O157:H7 Xuzhou, a novel conjugative plasmid called pO157-Sal
encoding a complete set of genes for the T4bSS was identified,
but its involvement in the colonisation process has not been
investigated as yet (Wang et al. 2011; Zhao et al. 2013).

Type 1 pili (T1P) T1P (also called Type 1 fimbriae) are the most
investigated pili secreted and assembled via a T7SS (Capitani
et al. 2006). The expression of T1P is induced during the ini-
tial bacterial adhesion step (Harris et al. 1990; Pratt and Kolter
1998; Cookson, Cooley and Woodward 2002; Orndorff et al. 2004;
Reisner et al. 2014) and they are involved in the early and late
stages of biofilm formation (Schembri, Kjaergaard and Klemm
2003; Beloin et al. 2004; Reisner et al. 2014). T1P also have a role in
the formation of SIgA (secretory IgA) mediated biofilm of the nor-
mal flora within the gut (Bollinger et al. 2003; Orndorff et al. 2004;
Bollinger et al. 2006). T1P are composed of FimA (fimbrillin A),
which constitutes the pilus rod, and FimH at the apex of the pilus
tip. FimH is the key adhesin component in T1P as it can link to
mannose residues of some receptors on eukaryotic cells (Kaper,
Nataro and Mobley 2004; Duncan et al. 2005) but also has nonspe-
cific binding activity to abiotic surfaces (Pratt and Kolter 1998,
Beloin et al. 2008). The absence of the FimH adhesin has been
shown to hinder biofilm formation by preventing cell-to-surface
and cell-to-cell contacts (Danese et al. 2000). In E. coli, different
fimH alleles have been reported as conferring distinct colonisa-
tion abilities and thus playing different roles in biofilm forma-
tion (Martinez et al. 2000; Weissman et al. 2006). It was shown
that contact between T1P and abiotic surfaces alters the com-
position of the OM and changes some physicochemical prop-
erties of the bacterial surface, which in turn influences adhe-
sion (Otto et al. 2001; Orndorff et al. 2004). While the laboratory
E. coli K12 strain and UPEC NU14 strain are the focus of the major-
ity of the investigations about T1P, their involvement in bacte-
rial adhesion and/or biofilm formation has been further demon-
strated in EPEC, EAEC, ETEC and STEC strains (Elliott and Kaper
1997; Cookson, Cooley and Woodward 2002; Moreira et al. 2003;
Sheikh et al. 2017). T1P are encoded in the fimBEAICDGHF gene
cluster, which is quite widespread in E. coli in both commen-
sal and pathogenic isolates (Sauer et al. 2000; Kaper, Nataro and
Mobley 2004; Wurpel et al. 2013). While present in EHEC O157:H7
(Abraham et al. 1988; Li et al. 1997; Roe et al. 2001; McWilliams
and Torres 2014), their contribution to the colonisation process
has yet to be demonstrated.
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Genes encoding the F1C pili are present in approximately 7%
of E. coli faecal isolates (Werneburg and Thanassi 2018). F1C pili
have been characterised in UPEC strains where they are encoded
in the foc (fimbriae of serotype 1C) operon homologous to the
fim locus (Klemm et al. 1994). In UPEC, F1C pili are involved in
adherence to the bladder and kidney cells, as well as in biofilm
formation (Werneburg and Thanassi 2018). Their prevalence and
contribution to the colonisation process in DEC remains to be
investigated.

CS31A pili The CS31A (coli surface associated 31a antigen) plays
a key role in the virulence of septicemic E. coli and ETEC, as
well as some EPEC and DAEC (Girardeau et al. 1988; Contre-
pois et al. 1989; Jallat et al. 1994; Adams et al. 1997). Because of
their thin structure, as well as their close and packed associa-
tion to the bacterial cell surface, CS31A was initially described
as capsule-like or even nonfimbrial antigens (Bertin et al. 1993;
Mechin, Rousset and Girardeau 1996) before being clearly identi-
fied as thin capsular pili secreted and assembled by a chaperone-
usher pathway (T7SS) (Thanassi, Saulino and Hultgren 1998).
These pili are synthesised from the clp operon located on
a high-molecular-weight self-transmissible R plasmid, called
p31A (Martin, Boeuf and Bousquet 1991; Jallat et al. 1994; Mar-
tin 1996). CS31A are considered homologous to the K88/F4 (fae
operon) and F41 pili but with some functional dissimilarities,
such as that CS31A does not exhibit haemagglutinin activity
(Girardeau et al. 1991). In ETEC, F4 pili allow bacterial adher-
ence to F4-specific receptors present on the brush borders of vil-
lous enterocytes thus promoting the colonisation of the small
intestine (Snoeck et al. 2008). The locus for diffuse adherence
(ldaCDEFGHI) (Scaletsky et al. 2005) from EPEC is homologous to
the K88 fae and ETEC CS31A clp operons. LdaH mediates dif-
fuse adherence to Hep-2 cells. The LdaH encoding gene has also
been found in STEC strains but no functional characterisation
has been reported as yet (Scaletsky et al. 2005).

Aggregative adherence fimbriae (AAF) AAF belongs to the
Afa/Dr (afimbrial adhesin/decay-accelerating factor receptor)
haemagglutinin family together with F1845 pili (Nowicki et al.
1990; Le Bouguenec and Servin 2006). In DAEC and EIEC, Afa
and Dr hemagglutinins recognise the Dr blood group antigen
(Nowicki et al. 1990). Among the five genes encoded in the afa
cluster, afaB, afaC and afaE are required for mannose-resistant
hemagglutination (MRHA) (Servin 2005). The Dr hemagglutinin
is encoded by the draABCDE operon, where draA, draB, draC, and
draD encode accessory proteins and draE encodes the adhesin
part (Nowicki et al. 1987; Servin 2005). In addition, it specifically
binds collagen IV (Nowicki et al. 1988). Afa and Dr haemagglu-
tinins can link to decay-accelerating factor (DAF) and to carci-
noembryonic antigen-related cellular adhesion molecules (CEA-
CAMs) (Nowicki et al. 1988; Westerlund et al. 1989; Berger et al.
2004). While some members of the Afa/Dr family were believed
not to form pili as they could not be observed by electron
microscopy examination, it is now clear they are secreted as AAF
and F1845 by T7SS, to form pili of various architecture depend-
ing on the pilin subunits (Anderson et al. 2004; Pettigrew et al.
2004).

In EAEC, the colonisation of the gut occurs through aggrega-
tive adherence (AA) due to AAF, which binds to ECM proteins
such as fibronectin, laminin and collagen IV (Farfan, Inman and
Nataro 2008; Berry et al. 2014) and then promotes biofilm forma-
tion (Hicks, Candy and Phillips 1996; Wakimoto et al. 2004). To
date, five AAFs (AAF/I to AAF/V) have been identified, all encoded
by virulence plasmids of EAEC (pAA) and the main subunits of

which are AggA, AafA, Agg3A, Agg4a and Agg5a respectively
(Nataro et al. 1992; Czeczulin et al. 1997; Boisen et al. 2008; Jonsson
et al. 2015). Another hypothetical Dr-related pilin called HdaA
(HUS-associated diffuse adherence) also appears to confer the
capacity to cause the AA phenotype in EAEC (Boisen et al. 2008).
In DAEC and EIEC, F1845 pili are involved in gut colonisation
(Servin 2005). F1845 pili are responsible for diffuse adherence
to epithelial cells of the gut and are encoded by the daaABCDE
operon (Bilge et al. 1989; Bilge et al. 1993).

Colonisation factor antigens (CFA) In ETEC, colonisation fac-
tor antigens (CFA), also called coli surface antigens (CS), form pili
that take part in adhesion to the small intestine and are critical
for virulence (Gaastra and Svennerholm 1996). CFA/I, CFA/II (CS1,
2 and 3) and CFA/IV (CS4, 5 and 6) are the most virulent (Sjoberg
et al. 1988; Knutton et al. 1989; Taniguchi et al. 1995; Gaastra
and Svennerholm 1996; Svennerholm and Lundgren 2012) but
CS12, 14, 17, 18, 19, 20 and 31 can also adhere to intestinal cells
(Werneburg and Thanassi 2018). CFA/CS are encoded in operons;
taking CFA/I as an example, it is encoded by the cfaABCE operon,
where cfaB encodes the main subunit, cfaE the distal subunit,
cfaA a chaperone and cfaC the usher involved in pilin transport
across the OM (Jordi et al. 1992). Cell adhesion is enabled by CfaB
through its ability to bind glycosphingolipid (Jansson et al. 2006).

F9 pili In EHEC O157:H7, F9 pili are involved in the colonisation
of epithelial bovine cells, bovine gastrointestinal tissue explants
and can also bind to fibronectin (Low et al. 2006). Mutants of
the main subunit of F9 pili are still able to colonise the termi-
nal rectum, indicating that the adhesin is not solely responsible
for the rectal tropism observed but may contribute to colonisa-
tion at other sites, especially in young animals (Low et al. 2006).
These pili are short but are able to form longer bundles (Low et al.
2006). They are encoded in the F9 gene cluster, a six genes operon
located on the pathogenicity island O161 (Low et al. 2006; Wurpel
et al. 2013). This operon has also been identified in EPEC, as well
as EAEC (Wurpel et al. 2013). F9 pili are secreted and assembled
by a T7SS (Wurpel et al. 2013).

E. coli YcbQ laminin-binding fimbriae (ELF) In EHEC O157:H7,
it has been shown that E. coli YcbQ laminin-binding fimbriae
(ELF) bind laminin and are involved in adherence to epithelial
cells in humans, cows and pigs (Samadder et al. 2009). ELF form
peritrichous flexible fine fibres and are encoded by the elfADCG
operon, originally called the ycbQRST operon, which was pre-
viously identified in UPEC and some commensal E. coli strains
(Spurbeck et al. 2011). This operon is homologous to the F17
pili biogenesis genes found in ETEC, which are assembled and
secreted by a T7SS (Lintermans et al. 1988; Lintermans et al. 1991;
Bertin et al. 1996; Bertin et al. 2000). More generally, ELF are also
homologous to 20 K, K99 and G pili found in various pathogenic
E. coli (Guinee, Jansen and Agterberg 1976; Contrepois et al. 1983).
These pili have been shown to mediate binding to intestinal
mucosal cells, especially to N-acetyl-D-glucosamine-containing
receptors (Bertin et al. 1996). The composition of the pili and the
sequence of the tip-adhesin differ between the strains and could
explain the phenotypic divergence associated with the expres-
sion of this family of pili in different E. coli strains (Korea et al.
2010).

Long polar fimbriae (LPF) LPF are encoded by two oper-
ons lpf1 and lpf2 located on the pathogenicity islands O141
and O154 in EHEC O157:H7, respectively (Perna et al. 2001).
LPF are also present in other DEC, e.g. LEE-negative EHEC,
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EPEC, rabbit-specific EPEC, EAEC and ETEC, as well as in sev-
eral commensal strains (Doughty et al. 2002; Wurpel et al.
2013). They share homology with the LPF of Salmonella enterica
serovar Typhimurium which are involved in adherence to Peyer’s
patches and M cells in the human gut (Baumler and Heffron
1995; Baumler Tsolis and Heffron 1996). The lpf1 operon is com-
posed of five genes, with lpfA encoding the main pilus subunit,
lpfD and lpfE encoding minor subunits, and lpfB and lpfC encod-
ing the chaperone and usher, respectively (Doughty et al. 2002;
Torres et al. 2004). The lpf2 operon also contains five genes with
a duplication of lpfD called lpfD’ but with no lpfE paralogue (Tor-
res et al. 2004). In E. coli O157:H7, it has been proposed that LPF2
is expressed in early stages whereas LPF1 is expressed in late
stages of growth (Torres et al. 2004). LPF are secreted and assem-
bled by a T7SS and can bind fibronectin, laminin and collagen
IV, as well as the follicule-associated epithelium (FAE) of Peyer’s
patches in humans (Fitzhenry et al. 2006; Farfan and Torres 2012;
McWilliams and Torres 2014). Expression of lpf2 is increased
under conditions similar to those for biofilm formation (Torres
et al. 2007). Recently, it has been demonstrated that STEC iso-
lates positive for lpf2 formed significantly more biofilm than lpf2-
negatives isolates (Vogeleer et al. 2015). In EPEC, LPF have been
shown to contribute to the early stages of colonisation of rabbits
and the severity of diarrhoea (Newton et al. 2004).

E. coli common pilus (ECP) In EHEC, ECP (previously called Mat
for meningitis-associated temperature dependent pilus) pro-
vides adherence to HEp-2, HeLa and HT-29 cells and allows inter-
action between bacterial cells (Rendon et al. 2007). Secreted and
assembled by a T7SS, ECP expression is increased under envi-
ronmental conditions that are experienced in the GIT, e.g. low
oxygen and high CO2 concentrations (Rendon et al. 2007). How-
ever, its role seems to be secondary in the colonisation of the
human or bovine gut (Tatsuno et al. 2000; Dziva et al. 2004). The
ecp operon has been identified in numerous commensal and
pathogenic E. coli, including DEC (Rendon et al. 2007).

Sorbitol-fermenting frimbriae protein (SFP) In EHEC, the
expression of sorbitol-fermenting frimbriae protein (SFP) pili
is induced in anaerobic conditions and leads to an increased
adherence to Caco-2 and HCT-8 cells, with a mannose-resistance
hemagglutination phenotype (Brunder et al. 2001; Musken et al.
2008; Bielaszewska et al. 2009). These pili are encoded on the
sfpABDCDJG operon harboured in the virulence plasmid pSFO157
(Brunder, Karch and Schmidt 2006). SFP pili are secreted and
assembled by a T7SS (Brunder et al. 2001). Besides E. coli O157,
sfp has been identified in other EHEC serotypes, such as O165
(Bielaszewska et al. 2009), but its prevalence among STEC in gen-
eral is thought to be quite low (Toma et al. 2004). Distribution of
the sfp operon in other DEC has not been investigated in detail
as of yet.

Curli Curli are thin aggregative pili generally considered as one
of the major proteinaceous components of the E. coli biofilm
matrix (Smyth et al. 1996; Stathopoulos et al. 2000; Kostakioti
et al. 2005; Evans and Chapman 2014). These peculiar pili are
secreted and assembled by the T8SS through the extracellular-
nucleation-pathway (ENP). Curli are helical filamentous amyloid
fibres that facilitate cell–surface and cell–cell interactions and
promote biofilm formation (Olsen et al. 1993; Cookson, Cooley
and Woodward 2002; Szabo et al. 2005; Beloin et al. 2008; McCrate
et al. 2013). In EHEC O157:H7, curli are associated with cellu-
lose production, adherence to spinach leaves and Hep-2 cells
as well as abiotic surfaces (Kim and Kim 2004; Pawar, Rossman

and Chen 2005; Macarisin et al. 2012). In ETEC, curli facilitate
adherence to plastic surfaces (Szabo et al. 2005). Although curli
were originally thought not be expressed by EPEC (Ben Nasr et al.
1996), some strains were later reported to synthetise curli, play-
ing a role in bacterial adhesion and biofilm formation in con-
dition mimicking human or bovine hosts (Saldana et al. 2009).
However, curli do not seem to be required for biofilm forma-
tion and/or adhesion of EAEC strains (Sheikh et al. 2001; Berger
et al. 2009; Pereira et al. 2010). In Shigella spp. and EIEC, CsgD and
curli expression is often inactivated (Sakellaris et al. 2000). Two
operons are involved in curli production, (i) the csgBAC operon,
encoding the structural components of curli (CsgA and CsgB)
and an accessory protein (CsgC) and (ii) the csgDEFG operon,
encoding a transcriptional regulator (CsgD) and the secretion
machinery for transport across the OM (CsgE-G) (Arnqvist, Olsen
and Normark 1994; Hammar et al. 1995; Beloin et al. 2008). In the
current model, CsgB is proposed as embedded in the OM where
it acts as a nucleator for the polymerisation of the major CsgA
curlin (Van Gerven et al. 2015; Jain and Chapman 2019). While
the exact structure of curli fibres has not yet been elucidated
with molecular resolution (Van Gerven et al. 2015; Jain and Chap-
man 2019), the fibres have been reported to display irregular thin
branches, which would result from minor incorporation of CsgB
along the curli and promoting the formation of branched fibres
(Bian and Normark 1997; Soto and Hultgren 1999; Shu et al. 2012;
DeBenedictis, Ma and Keten 2017). Recently, CsgC and CsgE were
demonstrated to highly inhibit CsgA aggregation and CsgE was
shown to prevent pellicle biofilm formation when added exoge-
nously (Andersson et al. 2013; Evans et al. 2015).

Haemolysin-coregulated protein (Hcp) In EAEC, the
haemolysin-coregulated protein (Hcp) tube formed by the
Type VI secretion system (T6SS) was suggested to be of impor-
tance for biofilm formation (Aschtgen et al. 2008). More than
ten orthologues of the T6SS components have been identified
in EHEC and EPEC strains. This system can also contribute to
bacterial aggregation at the host cell surface (Dudley et al. 2006a;
Shrivastava and Mande 2008; Lloyd et al. 2009; Aschtgen et al.
2010; Moriel et al. 2010). Further investigations are required in
DEC to determine the exact role and molecular mechanisms
involved in the colonisation processes by the Hcp and T6SS.

THE DIFFERENT REGULATION LEVELS
INVOLVED IN THE EXPRESSION OF
COLONISATION FACTORS

In general, the expression of genes encoded on genomes into
proteins can be regulated at pre-transcriptional, transcriptional,
post-transcriptional, translational and/or post-translational lev-
els, as well as at translocational and post-translocational lev-
els, the latter of which are especially relevant and important for
molecular determinants expressed at the bacterial cell surface
(Fig. 3). With the rise of omic approaches, however, some basic
bacterial physiology concepts may sometimes be overlooked
and gene/protein expression is very often considered as being
limited to regulatory networks involving transcriptional repres-
sors or activators. However, when it comes to functions and
activities, it is primarily proteins that can help to comprehend
bacterial physiology. It must also be kept in mind that the rela-
tionship between mRNA and protein abundances only very par-
tially correlates; mRNA levels are just a proxy for the presence
of a protein but is not directly proportionate with the increase
or decrease folds of protein expression and even less with its
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Figure 3. Regulation levels and control mechanisms for the expression of genes encoding colonisation factors in DEC. Respective to biochemical process, the sequential
steps and events for gene/protein expression flow from pre-transcriptional, transcriptional, post-transcriptional, translational to post-translational regulation levels

(as depicted by blue arrows). Thus, at least five regulation levels can be considered in bacteria and at each level, different control mechanisms can be at play. Besides,
for a same protein encoded gene different regulation levels and regulatory mechanisms can intervene, e.g. the expression of Ag43 is regulated at pre-transcriptional
level by DNA methylation, at transcriptional level by OxyR, at post-transcriptional level by antitermination of transcription and translation initiation in the leader
mRNA, and also at post-translational levels with its autoaggregative activity modulated by pH, its native folding requiring chaperones and final subcellular localisa-

tion by translocation across the OM. Besides rRNA, tRNA and sRNA, biological functions and activities are essentially represented by proteins and the hierarchy of
regulations levels and control mechanisms (as depicted by shades of red) is opposite to the gene/protein expression flow; e.g. whatever the pre-transcriptional (with
DNA replication), transcriptional (with mRNA synthesis), post-transcriptional (with the modulation of transcripts) or translational (with the protein synthesis) levels,
they are all strictly depend on enzyme activites which can be regulated at post-translational levels in the first place with direct and immediate effect due to modulation

of their catalytic activity by temperature or pH for instance.

activity when we consider an enzyme for instance (Vogel and
Marcotte 2012). Here, the different regulatory levels involved in
bacterial adhesion and biofilm formation are highlighted using
key examples of different SCFs.

Regulation at the pre-transcriptional level: phase
variation

Prior to transcription, some regulatory mechanisms can already
be at work at the DNA level, through phase variation. There are
four main mechanisms of phase variation (i) DNA inversion, (ii)
slipped-strand mispairing, (iii) DNA methylation and (iv) DNA
deletion (Henderson et al. 1999). As a commonality, all these reg-
ulatory mechanisms primarily occur at the stage of DNA replica-
tion and a large majority of genes regulated by phase variation
are bacterial cell surface molecular determinants (Owen et al.
1996; Holden and Gally 2004).

In E. coli K12, T1P are well-known to be subjected to phase
variation following DNA inversion (Blomfield 2001). The expres-
sion of the fim operon is under the control of the fim promoter,
which is located within the fimS-invertible element (Abraham
et al. 1985; Wright, Seed and Hultgren 2007). The orientation of
the promoter determines the ON or OFF phase and then induces
the expression of upstream genes or not. Two tyrosine recombi-
nases, FimB and FimE, are known to control the orientation of
the fimS-invertible region. FimB predominantly switches the fim
operon transcription from OFF to ON, while FimE mediates ON to
OFF phase switching (Klemm 1986; Gally, Leathart and Blomfield
1996; Hannan et al. 2008). Of note, two DNA topological effec-
tors participate in this regulation, namely H-NS (histone-like
nucleoid-structuring protein) and IHF (integration host factor);
these histones play complementary role, as the DNA inversion
is absolutely dependent upon IHF, whereas the inversion rate is
slowed down with high levels of H-NS and vice versa (Dorman
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and Ni Bhriain 1993). The existence of this regulation in DEC has
not been examined as of yet.

Slipped-strand mispairing occurs in the course of DNA repli-
cation in repetitive DNA regions, which can be positioned either
upstream of a coding DNA sequence (CDS) and then influences
the transcription, such as the promoter efficiency, or within a
CDS and can affect the translational reading frame resulting in a
mutation frameshift (Henderson et al. 1999). In E. coli, phase vari-
ation resulting from strand-lippage has not been reported as yet,
nonetheless, there is no molecular mechanistic constraint for it
not to occur (Torres-Cruz and van der Woude 2003).

Phase variation resulting from DNA methylation corresponds
to a bacterial epigenetic mechanism (Henderson et al. 1999).
Ag43 is probably one of most investigated surface proteins sub-
jected to such a regulatory mechanisms (van der Woude and
Henderson 2008). This epigenetic regulation involves two pro-
teins, the DNA adenine methylase (Dam) and the OxyR tran-
scriptional regulator (van der Woude and Henderson 2008).
When Dam has methylated the GATC sites present in the oper-
ator region in the course of DNA replication, the repressor OxyR
cannot bind and transcription by the RNA polymerase occurs
and Ag43 is expressed (ON phase); however, if OxyR binds the
GATC sites before they are methylated by Dam, there is no tran-
scription and no Ag43 expression (OFF phase). Besides Ag43, sev-
eral pili secreted and assembled by the T7SS have been reported
to be subjected to such an epigenetic regulation in E. coli (Hen-
derson et al. 1999; Blomfield 2001). The pap (pyelonephritis-
associated pilus) operon in UPEC is considered as a paradigm
where the Dam methylation of a GATC-II site in the operator
region prevents binding of the repressor Lrp (leucine-responsive
regulatory protein), and consequently the papBA operon is tran-
scribed and the pili are expressed (ON phase). In the absence of
methylation at GATC-II, Lrp can bind to the operator, repress the
transcription and ultimately prevent pili formation (OFF phase).
Additionally, this repression can be lifted when Lrp binds to
another site called GATC-I. Among DEC, CS31A pili are subjected
to this same regulatory mechanism (Crost et al. 2003; Graveline
et al. 2014).

As a general trend, phase variation due to DNA deletion is
irreversible due to the loss of the genetic element bearing the
gene of interest. In E. coli, DNA deletion is responsible for unilat-
eral flagellar phase variation as reported in the H3, H47 and H17
strains (Zhou et al. 2015). While most flagellins are encoded by
fliC in E. coli, H3 and H47 are encoded by flkA and H17 is encoded
by flnA. For H3 and H47, their production results from the expres-
sion of flkAB operon, where the transcriptional regulator FlkB
represses fliC (Feng et al. 2008). Upon excision of the flk region
from the chromosome, flkAB is irreversibly deleted, the repres-
sion of fliC is released and the FliC flagellin is produced. Simi-
larly, the H17 strain can irreversibly switch flagellar antigens to
H4 (Ratiner 1967). It appears this flagellar phase variation can be
caused by excision of flnA (Liu et al. 2012). When flnA is present
in the chromosome, the translation of FliC H4 is inhibited and
only FlnA H17 is produced; once flnA is excised, the repression
of the fliC is released and only the FliC H4 is produced. The
∼35 kb DNA deletion region containing the flnA gene is excised
as a covalently closed extrachromosomal circular form. While
some DNA deletion can occur through homologous recombina-
tion (Henderson et al. 1999), flagellar phase variation is mediated
by non-homologous recombination via an integrase of the tyro-
sine recombinase family (Feng et al. 2008). The flagellar phase
variation mechanisms in some other E. coli H variants and espe-
cially in DEC remain to be defined.

Regulation at the transcriptional level: regulators and
effectors

Regulation at the transcriptional level is the most well-known
level of gene regulation and quite often the only one really
considered as a proxy for protein expression levels. Transcrip-
tional regulators can either be repressors or activators but it is
wrong to assume a repressor will systematically repress tran-
scription or an activator will activate transcription. A second
crucial partner to the process must also be considered, that is
the effector, which can be of two types, either an inducer or a co-
repressor. Four possibilities for regulation at the transcriptional
level can be discriminated: (i) positive control of an inducible
gene, where an activator is activated by an inducer, (ii) posi-
tive control of a repressible gene, where an activator is inacti-
vated by an inhibitor, (iii) negative control of an inducible gene,
where a repressor is inactivated by an inducer or (iv) negative
control of a repressible gene, where a repressor is activated by
a co-repressor. Additionally, a so-called repressor can act as an
activator for some genes and vice versa. In other words, the up-
expression or down-expression of a regulator is not sufficient
to know what kind of transcriptional regulation is taking place
without knowing the nature and level of the inducer.

Bacteria can sense and respond to environmental cues
thanks to a large range of two-component signal transduction
systems where a sensor activates a transcriptional regulator,
which further represses or activates gene expression (Hoch 2000;
Zschiedrich, Keidel and Szurmant 2016). Some of these systems
participate in cell-to-cell communication (CTCC) via a signal
molecule called auto-inducer (AI) (Bassler 2002). Quorum sens-
ing (QS) is only one of the different functions of CTCC, which
specifically refers to the sensing of the cell density (quorum);
QS should not be considered synonymous with CTCC because
some sensing can be unrelated to QS sensu stricto but to diffusion
sensing, confinement or efficiency sensing for instance (Redfield
2002; Platt and Fuqua 2010; West et al. 2012). This semantic issue
is of particular importance in biofilm formation, since by defini-
tion, bacteria cells are at a high density following sessile devel-
opment and therefore the notion of QS makes little sense. Tran-
scriptional regulators of virulence and SCFs have been the sub-
ject of intense and extensive research and scientific literature in
DEC (Beloin et al. 2008; Tobe 2008; Pruss 2017; Rossi et al. 2018).
For these reasons only some key examples will be provided to
illustrate the relevance of differentiating the regulation at dif-
ferent levels.

At the transcriptional level, PNAG production is regulated by
NhaR, a transcriptional regulator of the LysR family, which acti-
vates the transcription of the pgaABCD operon by binding to two
sites near the -35 region of the promoter (Goller et al. 2006). In
EPS, the production of colanic acid is consistently upregulated
within biofilms by the RcsA transcriptional activator (Matthysse
et al. 2008; May and Okabe 2008). The transcription of the wca
operon is regulated by the rcsABCF locus that encodes a two-
component system (Gervais and Drapeau 1992; Ebel and Trempy
1999; Beloin et al. 2008). However, the signal sensed by the RcsC
sensor kinase remains unknown (Whitfield and Roberts 1999;
Oropeza, Salgado-Bravo and Calva 2015). H-NS is known to act as
a transcriptional repressor in bacteria, a so-called bacterial tran-
scriptional silencing, analogous to eukaryotic silencing by his-
tones (Landick, Wade and Grainger 2015; Grainger 2016). While
RcsA is present at a low amount in the cell, this was found to
be partially due to transcriptional silencing by H-NS (Sledjeski
and Gottesman 1995). Cellulose synthesis is under the control
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of the CsgD transcriptional regulator (Romling et al. 2000; Zor-
raquino et al. 2013). Interestingly in EIEC, csgD expression is often
inactivated (Sakellaris et al. 2000), suggesting that biofilm forma-
tion can interfere with pathogenesis, making these strains poor
biofilm formers.

While no specific transcriptional regulator has been identi-
fied for the expression of AIDA-I, it was shown that transcription
was enhanced in the absence of H-NS and RfaH transcriptional
regulators (Benz et al. 2010). Similarly, the transcription of ehaG
and fdeC is regulated by H-NS (Totsika et al. 2012; Easton et al.
2014).

CS31A synthesis is dramatically reduced in media contain-
ing alanine or leucine, suggesting that these amino acids can
play a role as effectors (Crost et al. 2003). The ON/OFF switch
is locked in the OFF phase by alanine, whilst leucine repressed
transcription but without affecting the switch frequency. Anal-
ysis of clp expression indicated that alanine and leucine could
repress clp transcription by a methylation-independent mecha-
nism but also by either promoting methylation or methylation
protection of GATC-II and GATC-I respectively, which increased
the methylation pattern characteristic of repressed cells. Fur-
thermore, alanine prevented the AfaF-dependent methylation
protection and thus the appearance of cells in the ON phase.
Additional regulatory proteins, including ClpB, cAMP, receptor
protein (CRP) and H-NS, also play important roles in the tran-
scriptional expression of the operons of the pap family combined
with regulation at a pre-transcriptional level by phase variation
(Blomfield and van der Woude 2007).

For the T4P in EPEC, the expression of the bfp operon is con-
trolled by the BfpT (also called PerA) transcriptional regulator,
a member of the AraC family, encoded on the enteroadherence
factor plasmid (Tobe et al. 1992; Gomez-Duarte and Kaper 1995).
The expression of CFA/I is positively regulated by CfaR, whereas
for the expression of CFA/II, CS1 and CS2 is positively regulated
by the rns gene product (a homologue to cfaR with 96% iden-
tity) (Caron and Meyer 1989; Caron and Scott 1990; Savelkoul
et al. 1990). The expression of AAF is induced by the transcrip-
tional activator AggR (an homologue of AraC) also located on
pAA (Nataro et al. 1994); YafK and Fis (factor for inversion stim-
ulation) have also been reported to regulate AAF/II transcription
(Sheikh et al. 2001). From a transcriptional regulation point of
view, lpf1 is repressed by H-NS and activated by Ler in response
to different environmental conditions (Torres et al. 2007; Rojas-
Lopez et al. 2011), whereas lpf2 transcription appears to be acti-
vated by Fur (Torres et al. 2007). Regulation of curli biogenesis is
complex and involves several two-component systems, such as
EnvZ/OmpR, CpxA/CpxR or CpxR/H-NS/RstA/IHF/OmpR (Vidal
et al. 1998; Prigent-Combaret et al. 2000; Prigent-Combaret et al.
2001; Beloin et al. 2008; Ogasawara et al. 2010; Laverty, Gorman
and Gilmore 2014). In EPEC, Fis has been identified as a nega-
tive transcriptional regulator of csgA expression (Saldana et al.
2009). Curli expression can be triggered by a large range of envi-
ronmental signals such as the temperature, osmolarity or redox
potential (Olsen et al. 1993; Prigent-Combaret et al. 1999; Gerstel
and Romling 2001; Evans and Chapman 2014).

The transcriptional regulatory control of the locus of ente-
rocyte effacement (LEE) encoding the injectisome is undoubt-
edly one of the most extensively investigated in DEC, and in
particular in EPEC and EHEC (Schmidt 2010; Stevens and Frankel
2014; Franzin and Sircili 2015). For additional information about
the complex regulation networks of specific, global and phage
encoded regulators, as well as environmental signals such as
nutrient sources or metabolic products from the host or micro-
biota that can affect the transcription of the LEE-encoded genes,

readers are referred to recent, specific reviews on the topic
(Connolly, Finlay and Roe 2015; Furniss and Clements 2018;
Platenkamp and Mellies 2018; Turner, Connolly and Roe 2018).

Regulation at a post-transcriptional level

At least three main regulation mechanisms can occur post-
transcriptionally, (i) the stability of mRNA, which can be quan-
tified by determining its half-life, (ii) a riboswitch, where a
molecule such as a metabolite can change the folding of an
mRNA with the formation of a termination hairpin that stops
the on-going transcription by the RNA polymerase or (iii) atten-
uation based on the formation of terminator/anti-termnator
loops, which couple or uncouple the transcription by the RNA
polymerase with the translation of the mRNA. Such post-
transcriptional regulations are important regulatory mecha-
nisms that are generally overlooked and underestimated, most
likely because they cannot be easily investigated and estimated
by transcriptomic analysis on its own (Vogel and Marcotte 2012).

Recently, it was shown that the expression level of agn43 can
be controlled by antitermination of transcription and transla-
tion initiation in the leader mRNA (Wallecha et al. 2014). Among
EPS determinants, PNAG production is regulated by the RNA-
binding protein CsrA (carbon storage regulatory protein A) post-
transcriptionally (Boles and Horswill 2011; Wang, Yang and Yang
2017), where CsrA binds cooperatively to the pgaA mRNA and
competes for recognition with the 30S ribosomal subunit. By
binding to sites located in the mRNA leader, CsrA can fur-
ther destabilise the pgaA transcript. The transcription of yeeJ is
increased in absence of the mRNA regulator PNPase, an exori-
bonuclease polynucleotide phosphorylase component of the
degradosome (Martinez-Gil et al. 2017).

Pili produced by the pap operon appears to be regulated post-
transcriptionally as a result of differential mRNA stability (Baga
et al. 1988). The study demonstrated that the papBA transcript
is processed and the resulting mRNA encoding the major pilin
subunit accumulated. The difference in abundance of the two
mRNA species could be readily explained by differences in their
half-life. In E. coli, RNA degradation occurs via the degradosome
thanks to the combination of endoribonuclease and exoribonu-
clease activities (Burger, Whiteley and Boshoff 2011; Bandyra
et al. 2013).

Regulation at the translational level

While attenuation collaterally affects the translation, three
main mechanisms are directly involved in the regulation of
translation, (i) anti-sense RNAs (including the small RNAs),
which hybridise with mRNA and thus block the binding of the
ribosome, (ii) riboregulation, where a ligand changes the mRNA
folding, which consequently prevents the binding of the ribo-
some and (iii) translational efficiency depending on the codon
usage.

In addition to CsrA, PNAG synthesis is regulated by two small
RNAs, CsrB and CsrC, which actually sequester CsrA and thus
activate the translation of the pgaABCD transcript (Liu et al. 1997;
Weilbacher et al. 2003). For colanic acid production, the low level
of expression from the rcsA promoter by H-NS transcriptional
silencing is alleviated by the DsrA small RNA (Sledjeski and
Gottesman 1995).

In E. coli, the OmpA protein is expressed to very high lev-
els, is growth rate dependent and is a paradigm for riboregu-
lation (Lugtenberg et al. 1976; Koebnik, Locher and Van Gelder
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2000). Actually, the ompA mRNA half-life increases proportion-
ally with the bacterial growth rate (Nilsson et al. 1984). While
a specific region of the transcript is targeted by the RNaseE
(endoribonuclease E), binding of the ribosome induces confor-
mational changes that mitigate the mRNA degradation (Emory
and Belasco 1990; Emory, Bouvet and Belasco 1992; Hansen et al.
1994). As an antagonist, Hfq can bind the transcript to decrease
its stability, thus inducing RNA decay (Nilsson et al. 1984; Vytvyt-
ska et al. 2000). Hfq facilitates the binding of a small RNA called
MicA in the vicinity of the ribosome-binding site, thus prevent-
ing ribosomal recruitment (Udekwu et al. 2005).

Regulation at the post-translational level

Regulations at the post-translational level comprises the most
diverse range of molecular mechanisms and is hierarchically
the most important (Fig. 3). In metabolic pathways, regulation
at the post-translational levels is a key mechanism, particularly
in relation to the modulation of the enzymatic activity, which
can be influenced by physical parameters (pH, temperature,
ionic force, redox, etc. . . ), inducers and inhibitors (irreversible
or reversible: competitive, non-competitive, uncompetitive or
mixed inhibition) (Guedon et al. 2000; Desvaux and Petitde-
mange 2002; Desvaux 2004); retro-inhibition and pro-activation
can also occur and may also involve allosteric enzymes. Protein
activity can be further altered by numerous post-translational
modifications, namely, (i) proteolytic cleavage and (ii) chem-
ical modifications such as disulphide bonds, phosphoryla-
tion, acetylation, methylation, adenylation or uridylation. Post-
translational regulation also includes the protein folding, associ-
ation/dissociation of homo- and heteromers, the degradation of
proteins following the N-terminal rule by the ClpAP proteolytic
complex, which can all influence the protein half-life, as well as
the protein translocation to a final subcellular location. Indeed,
the maturation of a protein can also occur at translocational and
post-translocational levels.

As an example of post-translational regulation, the
decreased production of colanic acid at 37◦C results from
the degradation of the RcsA transcriptional activator by the
Lon protease (Ebel and Trempy 1999). This post-translational
regulation alleviates the wca transcription and explain the low
amount of RcsA in cell (Sailer, Meberg and Young 2003). As a
two-component system, the RcsA regulator is activated by the
transfer of a phosphate group from the RcsC sensor, which is
per se another post-translational regulation level (Desai and
Kenney 2017). For cellulose biosynthesis, the catalytic activity
of the BcsA-B complex using UDP-glucose as a substrate is
allosterically controlled by cyclic-di-GMP (c-di-GMP) on the PilZ
domain of the cellulose synthetase BcsA (Omadjela et al. 2013).
Actually, the PilZ domain was the first effector identified that
is activated upon binding of c-di-GMP (Ryan, Tolker-Nielsen
and Dow 2012). Furthermore, the diguanylate cyclase AdrA
exhibiting a GGDEF domain regulates c-di-GMP production
(Romling et al. 2000; Zorraquino et al. 2013). C-di-GMP is a ubiq-
uitous second messenger produced by the diguanylate cyclase
exhibiting GGDEF domain, which is antagonistically degraded
by the phosphodiesterases exhibiting EAL domain (Romling
and Amikam 2006). This molecule controls the motility and
virulence of planktonic cells, as well as cell adhesion and
persistence of multicellular communities (Jenal and Malone
2006; Romling and Amikam 2006; Beloin et al. 2008).

As an autotransporter, Ag43 exhibits a signal peptide, which
drives the preprotein to the Sec export system for translocation
across the CM before being cleaved off after translocation into

the periplasm. In the periplasm, several chaperones participate
in the folding prior to the translocation across the OM through
a cooperative mechanism involving the translocation assembly
(TAM) and β-barrel assemby (BAM) machineries (Selkrig et al.
2014). Additionally, the passenger of Ag43 is glycosylated, which
stabilises its conformation (Sherlock et al. 2006). These different
post-translational, translocational and post-translocational lev-
els all contribute to the regulation of the expression of this sur-
face protein. While glycosylation is not that important for the
functions of Ag43 (Reidl et al. 2009), in TibA it is necessary for
autoaggregation, adhesion to epithelial cells and biofilm forma-
tion (Cote, Charbonneau and Mourez 2013).

CONCLUSION AND PERSPECTIVES

Reviewing the different cell–surface molecular determinants
that can participate in the surface colonisation process in DEC,
from bacterial adhesion to biofilm formation, the wealth of SCFs
at play is clearly highlighted. While some of these molecular
determinants still remain to be fully characterised, their inter-
play in surface colonisation must also be carefully considered
and kept in mind. The flagella, as force-generating cell–surface
organelles, have been demonstrated to be important for biofilm
formation (Hobley et al. 2015), but expression of strong adher-
ence factors could replace motility in the early stages of biofilm
formation (Pratt and Kolter 1998; Donlan 2002). Although flag-
ella expression is repressed during the switch from the plank-
tonic to sessile lifestyle to reduce the motility capacity of the
bacteria, these surface organelles have a structural and architec-
tural role in the EPM (Hung et al. 2013; Serra, Richter and Hengge
2013). While the expression of flagellar genes are repressed,
genes involved in the biosynthesis of the EPM components are
generally activated during the biofilm maturation step (Gutten-
plan and Kearns 2013). In E. coli K12, capsule polysaccharide
and T1P appear to block the autoaggregation mediated by Ag43
by physically shielding intercellular Ag43-Ag43 interaction (Has-
man, Chakraborty and Klemm 1999; Schembri, Dalsgaard and
Klemm 2004), whilst, in turn, the autoaggregation overrides bac-
terial motility (Ulett, Webb and Schembri 2006). In some ExPEC,
T1P expression appears to be further modulated and influenced
by OmpA or OmpX, together with an increase of exopolysaccha-
ride production, as well as a decrease in bacterial motility (Otto
and Hermansson 2004; Teng et al. 2006). In NMEC, OmpA would
act together with Hek in the invasion of epithelial cells (Smith
et al. 2007; Fagan, Lambert and Smith 2008). All-in-all, this sug-
gests the OMPs’ composition of the OM may act as a signal in
physiological adaptation of bacteria for surface adhesion and
colonisation; this research direction is one of the next frontiers
to be explored in DEC.

As a general trend, the average number of pili types appears
lower in commensal compared to pathogenic E. coli (Spurbeck
et al. 2011). For instance, curli or conjugative pili can compensate
for motility during initial adhesion and biofilm development
(Prigent-Combaret et al. 2000; Ghigo 2001; Reisner et al. 2003;
Beloin et al. 2008). Plasmids in general can encode numerous
SCFs as shown in ETEC and EAEC (Amabile-Cuevas and Chicurel
1996; Mainil et al. 1998; Ghigo 2001; Molin and Tolker-Nielsen
2003; Kaper, Nataro and Mobley 2004; Wuertz, Okabe and Haus-
ner 2004; Beloin et al. 2008; Ong et al. 2009). While conjugative
plasmids can confer initial adhesion capacity and modulate the
biofilm architecture (Ghigo 2001; Wuertz, Okabe and Hausner
2004), the genetic mobility of this extrachromosomal gene pool
and its contribution to biofilm formation remain poorly inves-
tigated in DEC (Dudley et al. 2006b). In Pseudomonas aeruginosa,
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T4P have been primarily regarded as involved in the attachment
of epithelial cells in the course of an infection but later were
demonstrated to also bind to abiotic surfaces such as polyvinyl
chloride, polystyrene and stainless steel (Giltner et al. 2006) and
it even appeared to exhibit a much higher affinity towards steel
than the mucosal epithelial surface, which emphasises the rel-
evance of examining T4P in both environmental and clinical
conditions (Yu et al. 2007; Burgess, Desvaux and Olmez 2014).
In the human and animal cutaneous pathogens Erysipelothrix
rhusiopathiae, the RspA (rhusiopathiae surface protein A) and
RspB surface proteins have been shown to specifically bind sev-
eral ECM components, namely, fibronectin, collagens I and IV,
but also polystyrene shedding light on the ecophysiology of this
microorganism through its binding ability to adhere to both
biotic and abiotic surfaces (Shimoji et al. 2003). These aspects
have not been reported or examined as yet in DEC but are partic-
ularly relevant considering the presence of T4P and ECM-binding
proteins, especially some ATs, in the various E. coli enteropatho-
types.

The regulatory network for the production of colonisation
factors is often depicted as being restricted to the transcriptional
level. However, this review clearly demonstrates that the range
of regulation levels is much broader and even more complex
(Fig. 3). As a general trend, it is important to stress and keep in
mind that the primary functional and regulation level is post-
translational and not transcriptional, as is sometimes assumed.
Whenever DNA replication, RNA polymerisation or protein syn-
thesis occur, enzymes are essential and required for these phys-
iological processes at pre-transcriptional, transcriptional and
translational regulation levels, respectively; any abrupt changes
in the environmental conditions, such as some physicochemi-
cal parameters (e.g. pH, temperature, redox potential), will have
a first and direct effect on the enzyme activity before the cell
can even change its transcription profile. For the SCFs, the inter-
play taking place at the other regulation levels is extremely com-
plex and their hierarchy is extremely difficult to establish at a
global scale. As well as this, some regulatory mechanisms in
the expression of SCFs in DEC have not been fully investigated,
such as attenuation, riboswitches or translational efficiency,
but their involvement cannot be excluded. As molecular cell-
surface determinants, the SCFs in DEC need to be translocated
across a LPS-diderm bacterial cell envelope to be functional
and active, which involves further translocational and post-
translocational regulation levels that should not be overlooked
in a regulatory network. To this end, our view of the regulatory
network for the production of SCFs in E. coli remains incom-
plete and there is far from an integrated view of all regulation
mechanisms. In addition, findings from investigations using
domesticated laboratory strains of E. coli must be interpreted
with caution and reinvestigation in DEC genetic backgrounds
would be wise (Hobman, Penn and Pallen 2007). This will
undoubtedly lead to new discoveries in the field in the years to
come and contribute to our understanding of DEC colonisation
mechanisms.

In DEC, SCFs have often been examined for their contribu-
tion to bacterial virulence and thus investigated in conditions
related to human infection (Nataro and Kaper 1998; Kaper et al.
2004; Rossi et al. 2018). In addition to humans, the GIT of a wide
range of animals also harbours E. coli strains, both commen-
sal and pathogenic (Escobar-Paramo et al. 2006; Croxen et al.
2013; Smati et al. 2015; Torres 2017). Following shedding from
these animal reservoirs, E. coli is also found in the environment.
Outside the host, the range of extraintestinal environmental
conditions that can be encountered by this species is wide,

ranging from soil, water to plants, as well as food matrices and
food processing facilities (van Elsas et al. 2011; Giaouris et al.
2014; Jang et al. 2017). As foodborne zoonotic pathogens, under-
standing the ecophysiology of DEC necessitates considering its
lifestyle outside the human host. In fact, the role of SCFs should
be placed in a context much broader than the colonisation of the
GIT, as they can also play an important role in the colonisation of
other environmental niches. A focus solely on the physiopathol-
ogy and GIT environment may bias and limit a full understand-
ing of the wide diversity of SCFs in E. coli. While the notion of
virulence factors is a major contribution to the field of microbial
pathogenesis (Falkow 1988; Finlay and Falkow 1989), a change
of paradigm with the concept of coincidental by-products of
commensalism (Le Gall et al. 2007; Diard et al. 2010; Leimbach,
Hacker and Dobrindt 2013) or niche factors (Hill 2012) is neces-
sary to more accurately apprehend and understand the ecophys-
iology of pathogenic species in the food chain and in one-health
approach.

Taking a one-health approach considering the whole food
chain, the physiology of DEC should not only be considered
with respect to human infection only, but also in conditions
representative of upstream, i.e. from the natural environments,
animal/human reservoirs, agri-food environments and food-
stuffs (Burgess, Desvaux and Olmez 2014). Investigating the
ecophysiology of the DEC with respect to the various biotopes
and biocoenoses encountered in different ecosystems from
natural environments, animal reservoirs, food matrices, food-
processing environments, to human ingestion should shed new
light on the relevance and contribution of the SCFs for this
species and inform the design of strategic, targeted interven-
tions to improve public health.
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