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ABSTRACT
Among fungal pathogens, Cryptococcus neoformans has gained great importance among the
scientific community of several reasons. This fungus is the causative agent of cryptococcosis,
a disease mainly associated to HIV immunosuppression and characterized by the appearance of
meningoencephalitis. Cryptococcal meningitis is responsible for hundreds of thousands of deaths
every year. Research of the pathogenesis and virulence mechanisms of this pathogen has focused
on three main different areas: Adaptation to the host environment (nutrients, pH, and free
radicals), mechanism of immune evasion (which include phenotypic variations and the ability to
behave as a facultative intracellular pathogen), and production of virulence factors. Cryptococcus
neoformans has two phenotypic characteristics, the capsule and synthesis of melanin that have
a profound effect in the virulence of the yeast because they both have protective effects and
induce host damage as virulence factors. Finally, the mechanisms that result in dissemination and
brain invasion are also of key importance to understand cryptococcal disease. In this review, I will
provide a brief overview of the main mechanisms that makes C. neoformans a pathogen in
susceptible patients.

Abbreviations: RNS: reactive nitrogen species; BBB: brain blood barrier; GXM: glucuronoxyloman-
nan; GXMGal: glucuronoxylomannogalactan
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Microscopic fungi comprise a large number of micro-
organisms of very different characteristics. Among them,
a few can cause disease in humans, especially among
immunocompromised patients [1]. Opportunistic inva-
sive fungal diseases have become a problem of concern
for the national health systems worldwide due to their
high associated mortality and economical cost [2,3].

The main human fungal pathogens belong to the
genera Candida, Aspergillus, and Cryptococcus. All of
them are cause disease in immunosuppressed patients,
so they are considered opportunistic pathogens. The
mechanisms involved in invasive fungal disease are
different and involved both fungal and host elements.
Some of pathogenic mechanisms are shared by all the
fungal pathogens, such as the ability to grow at physio-
logical temperature, resistance to the immune chal-
lenges (such as free radicals), and others. But the case
of Cryptococcus offers an excellent model to investigate
fungal pathogenesis for several reasons. First, it is
a pathogen of concern because it has a high prevalence
in certain geographical regions. But in addition, this
yeast has developed some pathogenic mechanisms and
acquired some virulence traits that make it an unique
fungal pathogen. In this review, I will summarize the

main reasons why Cryptococcus is a different fungal
pathogen.

Epidemiology, incidence and disease

Cryptococcus spp are basidiomycetes yeasts, which is
a different characteristic from most human pathogenic
fungi, which are ascomycetes. Its metabolism is mainly
respiratory, so its growth is highly dependent on the
presence of oxygen [4]. From a structural point of view,
Cryptococcus spp present a unique phenotypic trait,
which is the presence of a capsule that surrounds the
cell body.

Cryptococcus spp are widely found in the environ-
ment, but there are two species that have been asso-
ciated to disease in humans: Cryptococcus neoformans
and Cryptococcus gattii [5]. These two yeasts are very
closely related, but present differences in the epidemiol-
ogy and disease in humans. The most prevalent is
C. neoformans, which behaves as opportunistic patho-
gen in immunosuppressed patients. Cryptococcus gattii,
in contrast, has a lower incidence, but can cause disease
in immunocompetent patients [5]. Most studies about
virulence have focused on Cryptococcus neoformans,
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and for this reason, this review will focus mainly on this
yeast.

Cryptococcus neoformans has been known as causa-
tive agent of disease since the 19th century [5].
However, its incidence raised significantly at the end
of the 20th century, associated with the emergence of
HIV infection, and it was estimated that it could affect
around 10% of AIDS patients. The introduction of the
antiretroviral therapy has controlled the incidence of
cryptococcosis in developed countries, but it is still
a major concern in developing areas. Globally, it is
estimated that it causes around 180,000 deaths in
Subsaharian Africa, although it has also an important
incidence in Asia and South America [6,7].

The infection is acquired by inhalation of spores or
desiccated conidia from the environment, and the
pathogen first colonizes the lung [4]. The immune
response of this organ is very specific because it is
continuously exposed to exogenous particles [8], and
in fact, it is very effective at controlling the dissemina-
tion of the cryptococcal cells. However, in immunosup-
pressed patients, in particular those defective in CD4 T
cells, C. neoformans can replicate and disseminate
through the organism. The most characteristic clinical
outcome appears when it reaches the brain, where it
causes meningoencephalitis. This disease is very serious
and has a high mortality associated (around 20–50% of
affected patients).

Cryptococcus as environmental pathogen

When compared to other fungal pathogens, C. neoformans
is very characteristic in the infection route and in the
disease caused. For examples, other yeasts, such as
Candida spp, are rarely acquired by inhalation and
C. neoformans resembles more the infection caused by
filamentous fungi or primary fungal pathogens, such as
Histoplasma capsulatum. Cryptococcus neoformans has
developed some virulence mechanisms that allow the sur-
vival in the lung and dissemination to the brain.
Interestingly, some of them are also used to infect and
cause disease in environmental host [9]. This yeast has
a worldwide distribution and it can be disseminated using
some birds as carriers [10]. It is believed that the contin-
uous exposure to environmental stress, such as tempera-
ture fluctuations and dehydration has selected cryptococcal
strains with a higher fitness in mammalian individuals.
Furthermore, it has the ability to infect a large number or
organisms, such as amoebas, flies, nematodes, Lepidoptera,
and even plants as Arabidopsis thaliana [11–15]. Even in
the case of mammals, there are reports of infections in
a wide range of animals, such as koalas, dolphins, and
cats [16,17]. These multiples interactions are believed to

be important for the virulence of C. neoformans, because
the mechanisms that allow the fungal survival after inter-
action with these different hosts have selected multiple
traits that can be used to adapt and cause disease in
humans. Maybe the phenomenon that is best characterized
is its ability to survive after the interaction with environ-
mental predators, such as amoeba [18,19]. This cryptococ-
cal ability is very similar to the behavior during the
interaction with mammalian phagocytic cells.

Cryptococcal pathogenesis

Infection by C. neoformans is believed to occur through
inhalation infective particles. In this sense, it has been
shown that cryptococcal spores can germinate and
cause disease [20–22]. After inhalation, C. neoformans
must survive in the lung and evade the immune
response of this organ, which has an specialized
immune response [8]. The alveoli are covered by
a layer of alveolar macrophages, which are in charge
of the phagocytosis and elimination of these challenges.
In addition, lymphocytes (such as CD4, CD8) and
other myeloid cells (dendritic cells) are also recruited
in this organ. The lung also contains the surfactant,
which main function is to maintain surface tension of
the pleura during the respiration process. In addition,
some proteins from the surfactant have antimicrobial
properties.

In this complex environment, cryptococcal virulence
is dependent on three main types of processes:
Adaptation to the host environment, mechanisms of
immune evasion, and production of true virulence fac-
tors. Although these three processes should be applied to
most fungal pathogens, C. neoformans is unique because
it has developed many different types for adapting to the
host, evade the immune response, and produce true
virulence factors [23]. In the next sections, we will pro-
vide a brief overview on the main process that make
C. neoformans a unique fungal pathogen.

Adaptation mechanisms to host conditions

As any other microbial pathogen, survival in the host
involves the induction of adaptation mechanisms to phy-
siological temperature, different sources of nutrients, pH,
and oxidative stress (see seminal review in Ref. [24]). For
adaptation to these conditions, C. neoformans induces
multiple metabolic rearrangements and activation of sig-
naling pathways (such as MAPKs [25]). However, some
aspects of adaptation are of great interest. One is the
mechanisms that allow growth at our physiological tem-
perature. Environmental fungi normally do not tolerate
high temperatures, including the one from our body [26].
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And in fact, most pathogenic fungi are those able to
replicate at 37ºC. This indicates that this adaptation is
most probably one of the main factors to become
a pathogen in an immunosuppressed host [27]. Some of
the processes required for growth at higher temperatures
involve antioxidant responses, trehalose accumulation,
and activation of the different signaling pathways [28–31].

Another adaptation process required for survival
in vivo are those needed for the uptake of some limit-
ing, but essential nutrients such as metals that are
required for many metabolic reactions [32]. Among
them, the role of iron in cryptococcal virulence is one
of the most studied [33]. This metal is required for the
proper activity of many enzymes in the cell, and both
yeast and host cells have developed mechanisms to
efficiently compete and obtain it from tissues and
body fluids. In the case of C. neoformans, several pro-
teins are required for efficient iron uptake, such as iron
permeases, ferroxidases, and the glycoprotein Cig1,
which is chelator of heme groups [34–36].

The pH is another factor can change, not only in the
host, but also in the environment, and for this reason,
the ability to adapt to different pHs is also required to
survive during infection [37]. One of the main proteins
required for adaptation to neutral pH is Rim101, which
encodes a transcription factor that responds to alkaline
pH [38]. Interestingly, this protein also regulates other
important features required for virulence, such as cell
wall integrity and capsule production [39–41].

Another process required for survival during infection
involves the adaptation to free radicals. One of the main
mechanisms elicited by the immune response to induce
pathogen killing is oxidative and nitrosative stress. In
C. neoformans, adaptation to reactive oxygen species
depends mainly based on gluthatione and thioredoxin
[42–44] and mannitol [45]. Regarding resistance to reac-
tive nitrogen species (RNS), several proteins have been
involved in this process. Resistance to nitrosative stress
depends on the reductive power (production of NADPH)
of the cells and it has been shown that isocytrate dehy-
drogenase is important for this process. This enzyme
catalyzes the conversion of isocytrate to α-ketoglutarate,
a reaction that also produces NADPH. Absence of isocy-
trate dehydrogenase results in increased susceptibility to
RNS due to lower production of NADPH and mitochon-
drial disorders [46]. In agreement, a favohemoglobin
denitrosylase (whose activity depends on NADPH) is
important for detoxification of RNS [47,48].

Virulence factors

The definition of virulence factors is complex and very
heterogeneous according to the source, but there is

consensus that they can be defined as those elements
of a pathogen that can cause damage in the host [49].
Following this definition, C. neoformans produces sev-
eral degrading enzymes, such as proteases and lipases as
virulence factors. These enzymes are also produced by
other microbial pathogens, including fungi and bacteria
[50–52]. In the case of C. neoformans, there is another
degrading enzyme, urease, which also plays a role during
infection. Urease catalyzes the degradation urea into
CO2 and ammonia, and is required for nitrogen utiliza-
tion in multiple organisms. Cryptococcus neoformans
produces very high amounts of urease, and it presence
has been used as a diagnostic tool for cryptococcosis
[53]. Urease is considered a virulence factor. Absence
of this enzyme results in a fitness defect at slightly basic
pH [54]. During infection, urease is required for brain
invasion [55]. Urease promotes sequestration of crypto-
coccal cells at microcapillary vessels [56], and it has been
hypothesized that ammonia promotes adhesion of
C. neoformans either by increasing the expression of
adhesins on the endothelia or by a direct toxic effect
on the integrity tight junctions of the brain blood barrier
(BBB) that would facilitate the brain invasion [56,57]. In
agreement, proteins required for urease activity are also
defective in brain invasion [58].

However, C. neoformans is well known because it
expresses two clear virulence factors that interfere with
the host immune systems, which are the capsule and
melanin. Interestingly, these two components have
a dual role, not only as virulence factors, but also as
protective elements against some attacks of the immune
response.

The polysaccharide capsule
The capsule is the structure that has been characterized
in C. neoformans in most detail. It is mainly composed
of two types of polysaccharides: glucuronoxylomannan
(GXM) and glucuronoxylomannogalactan (GXMGal)
[59–62]. There are other minor components, which
are mannoproteins and chitin-like structures [63–65],
but their function and role in capsule structure is still
unknown.

Capsule structure is complex, and interestingly, it var-
ies according to the environmental conditions. It is orga-
nized in branched fibers that attach to the cell wall and
bind to each other through non covalent bonds [66,67].

Capsule synthesis is one of the topics of great inter-
est in the biology of this pathogen (see reviews in Refs.
[68–71]). Many of the proteins required for capsule
synthesis are glycosidases that catalyze the interconver-
sion of the different sugars that are bound to form the
polysaccharide fibers (see reviews in Refs. [72–76]).
However, there are still many aspects of capsule
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synthesis that remain unknown. In the last years, there
is increasing evidence that the polysaccharide compo-
nents are synthesized in the ER and exported inside
small vesicles [77]. The characterization of these vesi-
cles has demonstrated that they contain, not only the
capsular polysaccharide, but also other virulence factors
that contribute through disease [78], and for example,
they can influence the virulence of C. neoformans in
macrophages [79].

The capsule plays an important role in the virulence of
C. neoformans. However, it is not required for the regular
life of the yeast since acapsular mutants can survive and
replicate in vitro, but it absence results in defects in
virulence [80]. This is in part due to two main reasons.
First, the capsule has some protective effects during infec-
tion. It has been shown that the capsular polysaccharide
inhibits phagocytosis [81,82]. Themost plausible explana-
tion for this avoidance is that most epitopes that bind to
the macrophage receptors (mainly cell wall components)
are at the cell wall, and the presence of the capsule “hides”
them from the phagocytic cell.

The capsule also confers protection against some stress
factors, such as dehydration and free radicals [83–85].

The second function of the capsule during infection
is its role as a true virulence factor. Many different
studies have demonstrated that the capsular polysac-
charides are secreted and have multiple effects on the
host immune response (see reviews in Refs. [86,87]).
Most data has been focused on GXM because it is the
most abundant component of the capsule. This poly-
saccharide can inhibit neutrophil migration in different
ways. GXM inhibits the exit of leukocytes from the
blood vessels because it exhibits chemoattracting prop-
erties [88] and decreases the expression of chemokine
receptors [89]. In addition, it inhibits the binding of
leukocytes to endothelium by inducing L-selectin and
E-cadherin shedding from neutrophils [89–91] and also
by binding to CD18 [92].

Early studies demonstrated that infection with cap-
sular polysaccharide also produces an immunological
unresponsiveness, which is mainly manifested by an
inhibition in the production of antibodies [93,94].
Later on, many different deleterious effects have been
attributed to these polysaccharides. Among others, both
GXM and GalGXM alter the cytokine production and
affects maturation of dendritic cells and antigen pre-
sentation [95–99]. Another interesting mechanism
involved in immune unresponsiveness is the effect of
the capsular polysaccharides on the viability of some
leukocytes. It has been shown that both GXM and
GalGXM are potent inducers of apoptosis [100–103],
which adds another role for the capsule as virulence
factor.

The capsule can also interfere with elements of the
host innate immune system. The polysaccharide inhi-
bits the agglutination of cryptococcal cells by the sur-
factant protein SP-D. It is also noteworthy that SP-D−/−

mice are paradoxically more resistant to infection
[104,105], which suggests that C. neoformans has devel-
oped a mechanism to induce protective responses
through some of the surfactant proteins.

Melanin
The other typical phenotypic feature of C. neoformans
is the accumulation of melanin, which is a dark pig-
ment abundantly found in animals and fungi. In the
case of C. neoformans, melanin is only produced in the
presence of exogenous compounds, mainly diphenolic
compounds as L-DOPA [106,107]. Melanin synthesis
depends on an enzyme, diphenol oxidase, encoded by
two genes, LAC1 and LAC2, being Lac1 the main pro-
tein involved in the production of this pigment [108].

Melanin plays a profound effect in the biology and
virulence of C. neoformans. Mutants unable to melanize
present a significant reduction in their virulence
[109,110]. It is well known that this pigment confers
resistance to multiple stress factors, such as free radi-
cals, ionizing radiation, and heat [111–113]. It can also
bind and decrease the susceptibility to antifungal drugs
[114,115]. Interestingly, a recent study has demon-
strated that cryptococcal melanin enhances heat cap-
ture and contributes in this way to growth at low
temperature [116].

In addition to its protective role, melanin has been
involved in other processes required for virulence, and
for this reason, is considered a true virulence factor too.
Melanin seems to play a key role in the dissemination
from the lung to the brain [117]. Melanization also
changes the host cytokine production [118] and pro-
tects against macrophages [119]. The role of melanin as
virulence factor has been established from the study of
melanin particles (denominated melanin ghosts).
Injection of mice with purified cryptococcal melanin
[120] results in the formation of granulomas in the
spleen, lung, and liver, indicating that this pigment
can induce pro-inflammatory responses that alter the
host immune response.

Mechanisms for evasion of host immune response

Cryptococcus neoformans is a very particular yeast
because it has developed some specific mechanisms
that allow the evasion of some of the main attacks of
the immune response, and in consequence, persist in
tissues and organs for long periods.
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Phagocytosis avoidance and intracellular
pathogenesis
One of the areas characterized in most detail is the
interaction of C. neoformans with phagocytic cells.
After inhalation, spores and infectious particles have
to face a layer of alveolar macrophages, which poses
the first defense line in this organ. Although the capsule
inhibits phagocytosis (see above), cryptococcal cells can
in fact be phagocytosed in the presence of opsonins,
mainly complement proteins and circulating antibo-
dies. Even inside the macrophage, C. neoformans can
survive and avoid killing [121,122]. This yeast is, in
consequence, considered a facultative intracellular fun-
gal pathogen because it can replicate inside the phago-
cytic cell and live in this niche for long time periods. At
the moment, there are several responses that allow the
intracellular survival. Cryptococcal cells inhibit the full
acidification of the phagolysosome [123], which results
is lower antimicrobial activity in this compartment.
This inhibition is partially mediated by the activity of
urease, which degrades urea into CO2 and ammonia,
which neutralizes the acidic pH of the phagolysosome
[54]. In parallel, the phagolysosomes become leaky,
which may also affect the functionality of the phagoly-
sosome [122]. In agreement, it has been recently shown
that interference of phagosome acidification of crypto-
coccal-infected macrophages correlates with higher
replication of the fungal cells in vivo [124]. Finally,
the capsule of C. neoformans has antioxidant properties
[84], which also contributes to resistance to the free
radicals produced in the phagolysosome. All these
mechanisms are thought to be essential for the survival
of cryptococcal cells in macrophages.

Another of the interesting research topics in the cryp-
tococcal field is the outcome of yeast cells in the macro-
phages, and different processes might occur. For
example, massive fungal replication might result in
macrophage explosion. But yeast cells can be expelled
from the macrophage through a process that does not
affect the viability of the fungus nor the phagocytic cell.
This process has been denominated as vomocytosis or
non-lytic exocytosis [125,126]. Similarly, the cryptococcal
cells can be transferred between macrophages [127,128].
Even depending in the activation state of the macro-
phage, the yeast cells can be efficiently destroyed and
eliminated. And to make the situation more complex,
several mechanisms might occur at the same time. For
example, as observed in Supplemental Video 1, some
yeast cells can replicate within a macrophage at the
same time that other cryptococcal cells are attacked and
eliminated in the same phagocytic cell.

In summary, the outcome of the interaction between
C. neoformans and phagocytic cells is very complex,

and many situations are possible. At the moment, we
know some the factors that influence the fate of cryp-
tococcal cells in macrophages, so more work is required
to fully characterize this process, because it is believed
that the result of this interaction is important to under-
stand many aspects of the virulence of C. neoformans.

Capsular phenotypic variations
Cryptococcus neoformans has developed other mechan-
isms that contribute to the evasion of the host immune
system, which are related to changes in some phenotypic
features at the capsule and in the cell size of the yeast.

The capsule of C. neoformans is very dynamic, and
it can undergo different rearrangements during infec-
tion (see reviews in Refs. [129,130]. In particular,
there are three typical changes that have been
described in this structure. First, the capsule can
change in size. Early studies described that several
factors can induce capsule growth in vitro, such as
CO2, iron limitation, mammalian serum, and nutrient
limitation at basic pH [131–134]. More importantly,
capsular enlargement is one of the first responses
induced by C. neoformans in different types of
hosts, including mammals, amoebas, and insects
[135–137]. This process is important for the survival
of the yeast during infection and to avoid the
immune response. It has been shown that cells with
enlarged capsule are more resistant to oxidative
stress, antimicrobial peptides, and antifungals [84].
Furthermore, capsule growth also impairs phagocyto-
sis mediated by complement [138]. In agreement,
there is a correlation between the size of the capsule
of the yeasts in the CSF and the intracranial pressure
of patients with meningoencephalitis [139], suggest-
ing that this process participates in the disease caused
by this pathogen.

The capsule of the C. neoformans can also change its
epitope structure both in vitro and during infection
[140,141]. The importance of this process in the viru-
lence has not been fully elucidated, but it has been
correlated with the dissemination of the yeasts to the
brain during infection [141]. Changes in the structure
could also contribute to “hide” the fungal cells from
elements of the immune system, such as circulating
antibodies.

The third typical capsular change is related to the
amount of polysaccharide and the density of this struc-
ture [142,143]. In parallel to capsule growth, the density
of the polysaccharide capsule increases gradually dur-
ing time in vitro [143]. This process correlates with the
age of the cell. And in agreement, fungal cells isolated
from in vivo have a more dense capsule due to a higher
accumulation of polysaccharide fibers [142]. Increases
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in capsule density are believed to contribute to immune
evasion by hindering the penetration of molecules, such
as antimicrobial peptides, and by inducing protection
against other stress factors, such as free radicals.

Cryptococcal morphogenesis and immune evasion
A characteristic feature of fungi is the ability to grow in
different morphological forms. The process that is
more widely described is the formation of filaments,
such as hyphae and pseudohyphae. In the case of fungi
that can cause disease, the induction of morphological
changes contributes to some important virulence
mechanisms, such adhesion and penetration into
mucosae and tissues, and dissemination through the
body [144–146]. Morphogenesis in C. neoformans is
very peculiar and characteristic. This fungus can form
pseudohyphae [147,148], but their exact role during
infection remains to be fully understood. In contrast,
there is a very unique and typical change induced
in vivo, which involves a significant increase in the
cell size. While cryptococcal cells in vitro have a size
around 4–6 microns, in vivo the cell body can reach up
to 40–50 microns [135,149,150]. This change is even
more dramatic if the size of the capsule is considered,
finding yeast cells of a total size that can reach up to
70–100 microns. These cells have been denominated as
“titan cells” [151]. Due to their large size, the appear-
ance of these cells results in a fungal population that
cannot be easily eliminated by the immune system.
Titan cells cannot be phagocytosed, are more resistant
to stress factors and in consequence, contribute to
fungal persistence during long time periods
[149,150,152]. But there is also evidence that titan
cells can also actively contribute to some important
virulence mechanisms. For example, although due to
their size these cells cannot invade nor penetrate bio-
logical barriers, titan cells can replicate and originate
a progeny of daughter cells of regular size that can
disseminate to other organs [153]. Titan cells can also
impair the phagocytosis of yeast cells of regular size.
Furthermore, the appearance of titan cells also seems to
induce changes in the host immune response and cause
a Th2 polarization [154,155], which are associated with
non-protective responses during cryptococcosis.

Research on titan cells has been limited due to the
difficulty to obtain them in vitro, and most knowledge
about this transition has been obtained from the char-
acterization of cells isolated from infected mice.
However, recently, three different groups have identi-
fied conditions that mimic in vitro the formation of
titan cells [156–158]. These conditions include incuba-
tion in nutrient limited media, serum, low cell density,
and oxygen limitation. These articles have highlighted

new conditions that induce titanization in
C. neoformans. Cellular growth is enhanced when the
cultures are inoculated with a low cell density, suggest-
ing that the formation of titan cells is negatively regu-
lated by quorum sensing molecules. In agreement,
addition of Qsp1 (which is a short peptide that regu-
lates QS in this pathogen [159,160]) inhibits titan cells
formation [156,157], and deletion of the encoding gene
results in an increase in cell size during hypoxia [156].
Another factor that induces titanization is addition of
serum [157,158]. The central pathway involved in the
development of titan cells depends on cAMP
[150,157,158,161,162]. Several upstream and down-
stream elements on this pathway have been shown to
regulate titanization in C. neoformans. Among them,
the Ste3α pheromone receptor and the G-protein-
coupled receptor Gpr5 are needed for titan cell forma-
tion, and both of them activate cAMP synthesis
through the G-protein Gpa1 [149,161]. Furthermore,
the Rim101 transcription factor, which is regulated by
cAMP, is also required for titanization [161].

In summary, the discovery of in vitro conditions that
produce the appearance of titan cells will greatly con-
tribute in the future to understand the exact role of
these cells during infection.

Dissemination to the brain

Despite survival in the lung is important in the viru-
lence of C. neoformans, the dissemination from this
organ through the organism and in particular to the
brain. For still unknown reasons, this fungus has spe-
cial tropism for the brain, where it causes meningoen-
cephalitis. For this reason, the mechanisms that cause
the dissemination and invasion of the BBB and later
survival in the brain have been a priority in cryptococ-
cal research [163,164]. And in fact, there is evidence
that C. neoformans can invade the brain by different
and concomitant mechanisms.

At the moment, three different ways of dissemina-
tion and BBB invasion have been proposed.
Cryptococcal cells can bind to the luminal side of the
BBB and be endocytosed by the endothelial cells
[165,166]. Binding and invasion depends on host ele-
ments (such as CD44 and annexin A2 [167,168]) and
cryptococcal factors, such as urease, phospholipase B,
secretion of hyaluronic acid, and some metalloproteases
[56,169,170,171].

The second mechanisms involves damage of the
tight junctions of the BBB and cross of the cryptococcal
cells between the endothelial cells (paracellular passage)
[56,141,168].
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Finally, the third mechanism is related to the ability
of C. neoformans to survive in phagocytic cells. The
intracellular pathogenesis of C. neoformans can provide
not only a mechanism of immune evasion, but also
a way to disseminate through the organism “hidden”
inside infected phagocytic cells, a process denominated
as the “Trojan horse” dissemination mechanism. In the
last years, different groups have accumulated strong
evidence that support the Trojan horse hypothesis.
Depletion of macrophages results in reduced fungal
burden in the brain, and injection of mice with macro-
phages infected ex vivo with C. neoformans increases
the number of yeast cells in this organ [172].
Furthermore, the Trojan Horse migration process has
been also demonstrated in vitro using BBB models in
transwell plates [173,174]. This migration is enhanced
by some immune mediators, such as MCP-1, IFN-γ,
and TNF-γ. Interestingly, mutants that are defective in
dissemination can cross in vitro generated BBB as wild
type strains, supporting the role of the Trojan Horse
mechanism in cryptococcal dissemination [174].

Conclusions

Cryptococcus neoformans was first described as patho-
gen at the end of the 19th century, although the char-
acterization of its virulence mechanisms has been
mainly studied in the last four decades. Despite the
great effort invested by the scientific community in
this pathogen, there are still great challenges to man-
age and decrease its impact. An example is the char-
acterization of the capsule. This is the structure best
characterized in this yeast, but we still do not know
how it is synthesized in detail. A similar situation
occurs with other virulence traits, such as intracellular
pathogenesis. This is a characteristic cryptococcal fea-
ture, but its full contribution to virulence still remains
unknown. A key process of cryptococcal disease is the
dissemination of the yeasts to the brain. In this topic,
there have been importance advances, but there is still
a need to develop strategies to inhibit this step and
brain invasion. The current antifungal therapy for
cryptococcal disease is very limited, since echinocan-
dins are not active against C. neoformans, and treat-
ment is based on amphotericin B and fluconazole.
Even though Amphotericin B is very active, its toxicity
limits its use. There are some liposomal formulations
that reduce the negative effects of this antifungal, but
their high prices difficult their application in develop-
ing countries. For these reasons, future research is still
needed to understand the virulence of this fungal
pathogen.
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