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ABSTRACT While Aspergillus spp. remain the major cause of invasive mold infec-
tions in hematologic cancer patients and transplant recipients, other opportunistic
molds, such as Mucorales, Fusarium, and Scedosporium spp. are increasingly encoun-
tered in an expanding population of patients with severe and prolonged immuno-
suppression. High potential for tissue invasion and dissemination, resistance to mul-
tiple antifungals and high mortality rates are hallmarks of these non-Aspergillus
invasive mold infections (NAIMIs). Assessment of drug efficacy is particularly difficult
in the complex treatment scenarios of NAIMIs. Specifically, correlation between in
vitro susceptibility and in vivo responses to antifungals is hard to assess, in view of
the multiple, frequently interrelated factors influencing outcomes, such as pharma-
cokinetic/pharmacodynamic parameters determining drug availability at the site of
infection, the net state of immune suppression, delay in diagnosis, or surgical deb-
ulking of infectious foci. Our current therapeutic approach of NAIMIs should evolve
toward a better integration of the dynamic interactions between the pathogen, the
drug and the host. Innovative concepts of experimental research may consist in ma-
nipulating the host immune system to induce a specific antifungal response or tar-
geted drug delivery. In this review, we discuss the challenges in the management of
NAIMIs and provide an update about the latest advances in diagnostic and thera-
peutic approaches.
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Non-Aspergillus molds account for a small proportion (10 to 25%) of invasive mold
infections in high-risk hematologic cancer and transplant patients (1–3). However,

some recent reports suggest that their frequency is increasing as a possible conse-
quence of the expanding spectrum of population with profound and prolonged
immunosuppression and the widespread use of anti-Aspergillus prophylaxis that may
exert a selective pressure (4, 5). Mucormycosis (due to Mucorales) is the most frequent
of these non-Aspergillus invasive mold infections (NAIMIs) (6–8), followed by fusariosis
(Fusarium spp.) and scedosporiosis (Scedosporium and Lomentospora spp.). NAIMIs are
associated with high mortality rates, attributed in part to their intrinsic level of
resistance to multiple antifungal drugs (2, 9). However, many other factors should be
taken into account regarding the outcome of NAIMIs, such as the lack of reliable early
diagnostic tools, the propensity of these non-Aspergillus molds to induce extensive
tissue necrosis and to disseminate to multiple organs, and, perhaps most importantly,
the net state of immunosuppression of the host. Therefore, antifungal drug efficacy and
response to therapy are often difficult to assess. Although international guidelines
provide recommendations for the choice of antifungal therapy of mucormycosis,
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fusariosis, and scedosporiosis, robust evidence supporting the superiority of one drug
over another is scarce (10, 11).

Indeed, the correlation between in vitro MICs and in vivo efficacy is difficult to assess.
For example, pharmacokinetic and pharmacodynamic parameters come into play when
one tries to extrapolate in vitro susceptibility data into the actual bioavailability and
efficacy of the drug at the infection site. Moreover, because of the multidrug-resistant
profile of these molds, nonpharmacologic factors, such as the recovery from immuno-
suppression, are crucial for outcome, which leads to the concept of the host as the key
driver of success. Therefore, it is essential to consider a multilayered approach for the
management of these life-threatening infections, including the pathogen, the host and
the drug. Antifungal drug factors (selection of a specific antifungal, dose, route of
administration) are usually the only parameters that the physician can control best. In
this mini-review, we discuss the current thinking of the complexities of treatment of
NAIMIs by focusing the main issues in the decision-making: (i) the in vitro activity of the
drug, (ii) the pathophysiological conditions of the infection, (iii) pharmacokinetic and
pharmacodynamic parameters related to the drug bioavailability, host metabolism and
site of infection, and (iv) in vivo efficacy of the drug (or drug combinations) according
to data derived from clinical studies or animal models.

IN VITRO ACTIVITY OF ANTIFUNGALS

Despite the existence of standardized testing protocols, antifungal susceptibility
testing (AST) is not recommended for the clinical management of NAIMIs (10, 11).
Specifically, there is no established correlation between in vitro MIC and outcome for
NAIMIs and thus no defined interpretive breakpoints. The fact that NAIMIs are uncom-
mon diseases and that the outcome depends on multiple factors (Table 1) with a key
role of nonpharmacologic parameters (e.g., stage of the fungal infection at time of
diagnosis, activity of underlying disease, comorbidities, and recovery of immunosup-
pression) renders this assessment particularly difficult. Indeed, studies attempting to
correlate MICs and outcome in opportunistic mold infections, including NAIMIs, in
high-risk hematology patients are scarce (9, 12–14). Differences between in vitro
artificial AST conditions and the complexity of in vivo infections are illustrated in Fig. 1.
Specifically, AST is performed with high inocula of conidia in a glucose-rich medium
devoid of immune cells. These conditions differ from the in vivo mode of growth of
molds (hyphal formation, low oxygen and PH, limited nutrient sources, and small
populations of invading fungi that are exposed to immune cells).

Despite the absence of interpretive criteria for non-Aspergillus molds, some thoughts
may be helpful when considering the possible role of AST in clinical practice. One

TABLE 1 Determinants of outcome in NAIMIsa

Parameter Current strategies Investigational approach(es)

Diagnosis Early use of CT scan Targeted imaging (immuno-PET/MRI), PET/CT
Invasive procedures to get samples

(bronchoscopy, tissue biopsy)
Noninvasive specific biomarkers for NAIMI (e.g.,

PCR in serum/urine, antigen, or metabolomic
detection by POCTs for mucormycosis)

Degree of disease extension/dissemination Surgical debulking; antifungal therapy Novel therapies against angioinvasion (anti-
CotH antibodies)

In vitro activity of antifungal drugs Antifungal susceptibility testing by validated
methods

Role and significance not well defined; further
investigations needed

Penetration of drug at local site Adjust antifungal drug regimen to PK/PD;
debridement surgery for extensive
necrosis

Posaconazole-loaded leukocytes

Host immunity Reduce immunosuppressive therapy if
possible; consider additional G-CSF or
GM-CSF

Bioengineered genetically modified cytotoxic T
cells (CARs)

Metabolic conditions Correct hyperglycemia; avoid iron overload Novel therapies targeting iron metabolism
(e.g., siderophores)

aPOCTs, point-of-care tests; PK/PD, pharmacokinetic/pharmacodynamic; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-
stimulating factor; CARs, chimeric antigen receptors.

Minireview Antimicrobial Agents and Chemotherapy

November 2019 Volume 63 Issue 11 e01244-19 aac.asm.org 2

https://aac.asm.org


should first distinguish situations where the susceptibility of a mold to a given
antifungal drug is predictable (narrow range of MIC distribution) or unpredictable (wide
range of MIC distribution). This pattern may be genus or species-specific. The suscep-
tibility profiles of the most clinically relevant non-Aspergillus molds (Fig. 2) can be
categorized in situations where the antifungal activity of the drug is predictable and
either (i) highly active in vitro with evidence of clinical efficacy, (ii) displaying interme-
diate level of in vitro activity with uncertain clinical efficacy, or (iii) inactive or poorly
active in vitro with absence of clinical efficacy (in preclinical models of infection and/or
clinical data). In some cases, the activity of the drug is defined as “unpredictable,” which
means that a wide range of MICs are observed, and this variability can be (i) interspecies

FIG 1 Factors affecting antifungal activity: comparison of in vitro versus in vivo conditions.

FIG 2 In vitro antifungal activity of antifungal drugs against non-Aspergillus molds. The in vitro activity of the different
antifungal drugs against a given pathogenic mold is classified in four different categories: active (white), intermediate
(gray), inactive (black), or variable (hatched).

Minireview Antimicrobial Agents and Chemotherapy

November 2019 Volume 63 Issue 11 e01244-19 aac.asm.org 3

https://aac.asm.org


within a same genus or (ii) intraspecies. A potential utility of AST is thus limited to these
latter categories where in vitro activity of the drug cannot be predicted on the basis of
the mold identity. Because conventional diagnostic phenotypic methods usually
achieve identification of non-Aspergillus molds at the genus level only, it is often not
possible to predict antifungal susceptibility when interspecies variability exists within a
same genus. Novel diagnostic tools (matrix-assisted laser desorption ionization--time of
flight [MALDI-TOF] and sequencing analyses) can be helpful for more accurate identi-
fication at the species level.

However, interspecies and intraspecies variability of MIC often coexist among
non-Aspergillus molds. For instance, a wide range of voriconazole MICs can be observed
for all individual Fusarium spp., although F. solani tends to exhibit higher MIC90s than
other pathogenic species (e.g., F. oxysporum and F. verticilloides) (15). The same phe-
nomenon can be observed for posaconazole susceptibility among Mucorales spp. While
some species (e.g., Mucor circinelloides) are known to display higher posaconazole MICs
compared to others, important intraspecies variability has also been reported among
Rhizopus oryzae and other pathogenic species (16, 17). These large ranges of intraspe-
cies MIC distribution suggest that mechanisms of innate or acquired resistance may
exist in non-Aspergillus molds, which remains unknown and unexplored (18). Whether
variability in in vitro MICs can influence outcome is actually unclear. However, AST
results could be taken into account if alternative therapeutic choices exist and/or in the
assessment of possible causes of nonresponse to therapy in follow-up. Most impor-
tantly, MIC results should be interpreted in conjunction with multiple parameters that
may affect the activity of the drug in vivo (Table 1), which will be discussed in the next
section.

PHARMACOKINETIC/PHARMACODYNAMIC PARAMETERS

Besides the inherent in vitro activity of the drug, a key factor for therapeutic success
is the bioavailability of the drug at the site of infection. For this purpose, there are
several aspects of NAIMIs which differ from invasive aspergillosis and should be taken
into account. First, extrapulmonary spread of these infections to other organs (e.g., soft
tissues and bone, skin, eye, or brain) is frequently observed. Second, these molds have
enhanced tropism to invade blood vessels and cause extensive tissue necrosis in a
microenvironment of low-pH and low-oxygen conditions, which does not favor drug
penetration. Both immune cells and antifungal agents have limited access to this
necrotic tissue, and antifungal drug penetration is often limited to the lipid-rich
membrane of macrophages outside the necrotic center of the fungal lesions (19). Third,
diagnosis is frequently delayed, which means that a high fungal burden and/or
injurious inflammatory response may already be present when therapy is started.

Again, all of these in vivo conditions are not taken into account during in vitro
testing. For example, hypoxic conditions have been observed in a murine model of
invasive aspergillosis (20), and Binder et al. showed that the effect of hypoxia was
Aspergillus species dependent with altered activity of antifungals against A. terreus but
not against A. fumigatus or A. flavus (21). However, such data are scarce for non-
Aspergillus molds. One study analyzing the transcriptomic profile of Mucor irregularis
under hypoxic conditions found a pattern of gene expression that was unique to this
fungus and different from Aspergillus spp., which suggests that adaptation to hypoxia
is a fungal genus- and species-specific process (22). Another study found that a culture
protocol simulating the physiologic conditions of hypoxia and human body tempera-
ture during invasive mucormycosis increased the recovery rate of Mucorales (23).

The tissue distribution of antifungal agents has been extensively studied in animal
models (24). Drug penetration in tissues is influenced by multiple factors, such as the
drug formulation and mode of administration, the lipophilicity of the drug, the degree
of protein binding, and the inflammatory response (24). There may be considerable
variations between the concentrations of antifungals in bloodstream and the different
targeted organs, not only in terms of absolute concentration but also relative to the
concentration over time. Other characteristics specific to drug classes should be taken
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into account, such as the targeted delivery of amphotericin B liposomes, which makes
the actual significance of free serum or tissue concentrations unclear. Moreover,
important differences in pharmacokinetic properties may be observed between anti-
fungal drugs within a same class. For instance, triazoles display a wide range of
lipophilicity indexes (log D from 0.5 to �5) and percentages of protein binding (12 to
�99%), and the properties of amphotericin B are influenced by the type of formulation
(24, 25). Overall, mold-active azoles and amphotericin B formulations achieve concen-
trations in lung tissue that are at least equal to or higher than those in plasma, but
important differences may be observed relative to the type of lung compartment
(epithelial cells, alveolar macrophages, lung parenchyma, and pleural fluid) and the
type of drug (24). For example, posaconazole was shown to accumulate in pulmonary
epithelial cells and transfer to Aspergillus conidia upon contact with the respiratory
epithelium, which may explain its particular role for antifungal prophylaxis (26).

Most mold-active antifungals achieve good penetration in skin, soft tissues, or other
internal organs, such as the liver, spleen, or kidney, but there are discordances in their
concentration-time profiles between plasma and tissues (24). As an example, liposomal
amphotericin B exhibits nonlinear accumulation in these organs, with prolonged
persistence in tissues and half-lives of several weeks (27). However, penetration in
sanctuary sites, such as the brain and eye, is problematic. Voriconazole is the treatment
of choice for cerebral aspergillosis (28, 29), while posaconazole achieves modest brain
concentrations (50 to 80% of serum) (30). The new broad-spectrum triazole isavucona-
zole can achieve brain concentrations comparable to that of voriconazole (about twice
that in plasma) (31–33). Brain concentrations are relatively low for all formulations of
amphotericin B (24, 34), although they are effective and recommended for treatment of
cryptococcal meningitis and represent an alternative for cerebral aspergillosis (29).

Another important issue is the targeted serum concentration that should be
achieved for triazoles in the treatment of NAIMIs (e.g., posaconazole for mucormycosis
or voriconazole for fusariosis or scedosporiosis). For invasive aspergillosis, therapeutic
drug monitoring is recommended for the adjustment of voriconazole dosing. A trough
serum concentration of voriconazole of �1 �g/ml (for an MIC distribution of Aspergillus
spp. usually between 0.25 and 1 �g/ml) has been associated with better outcomes (35).
Petraitiene et al. demonstrated that sustained plasma posaconazole concentrations of
�1 �g/ml were effective for the prevention and treatment of invasive aspergillosis in a
rabbit model (36), which was further supported by a clinical study of posaconazole as
salvage therapy of invasive aspergillosis with improved response rates for average
plasma concentrations of �1 �g/ml (37). However, there is no established therapeutic
range for triazoles in the treatment of NAIMIs, and targeted levels are usually extrap-
olated from those defined for invasive aspergillosis. Because these molds usually exhibit
higher MICs compared to Aspergillus spp., there might be a rationale to target higher
concentrations (38), but evidence from clinical studies is lacking.

Another condition that may affect the response to therapy despite sufficient levels
of active drug at the site of infection is the development of biofilms and fungal persister
cells. This phenomenon has been well described with Candida spp. (39). Persisters
consist of subpopulations of dormant cells that are adherent to biotic surfaces or
implanted devices and exhibit high tolerance or resistance to antifungals, including the
fungicidal drugs. Aspergillus spp. are able to form biofilms in vitro and in vivo (40, 41).
Aspergillus biofilms can be observed on bronchial epithelium and be responsible for
chronic colonization, for instance in patients with cystic fibrosis. The activity of all
antifungal drug classes was shown to be considerably decreased against sessile biofilms
of Aspergillus fumigatus on bronchial epithelial cells (42). Similarly, Scedosporium spp.,
which are frequent persistent colonizers in patients with cystic fibrosis, are able to form
biofilms with decreased susceptibility to antifungals and possibly higher virulence (43).
Biofilm formation has also been described for Fusarium spp. in the pathogenesis of
keratitis with contact lenses and onychomycosis and for the pathogenic species of the
order Mucorales in vitro (44, 45). The role of biofilms in chronic fusariosis or mucormy-
cosis is, however, not yet established.
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Symbiosis and interactions of fungi with the rest of the microbiome could also be
determinant for disease containment or progression. Bacteria could be in competition
with fungi and produce signal molecules that will influence the rate of fungal growth
and propagation. Such interactions have been described for Scedosporium spp. and
Pseudomonas aeruginosa (46). While direct contact with the bacteria resulted in fungal
growth inhibition, the presence of P. aeruginosa could enhance the growth of the
fungus when the two microorganisms were cultured “plate to plate” with a physical
separation. Indeed, Scedosporium spp. are frequently recovered from the lungs of
patients with cystic fibrosis, and concomitant colonization with mucoid P. aeruginosa
has been identified as a predisposing factor (47).

EFFICACY OF ANTIFUNGALS IN VIVO

Most recommendations for the treatment of NAIMIs rely on observations derived
from uncontrolled and mostly retrospective small clinical studies. However, some
particular features should be highlighted: (i) the absence of comparative randomized
trials because of the rarity of the disease, and the heterogeneity of site of infection,
underlying hosts, and NAIMIs, and (ii) the crucial role of nonpharmacologic parameters
in the outcome of these infections, such as the feasibility, timing, and extent of surgical
interventions and recovery from immunosuppression. In addition, because these infec-
tions are due to multiresistant fungi and are associated with high mortality rates,
combination antifungal therapies represent attractive options, but their actual benefit
is very difficult to demonstrate (14). Clinical studies assessing antifungal drug efficacy
for the three most relevant NAIMIs will be discussed below. General and specific
recommendations for the management of NAIMIs, including antifungal therapy and
adjuvant treatments, are summarized in Table 2.

TABLE 2 Recommendations for the management of NAIMIsa

Type of NAIMI Treatment Comments

Antifungal therapy
All (general principles) Early start of empirical antifungal therapy with

broad-spectrum antifungals
High index of suspicion. Crucial for outcome, e.g.,

L-AMB or ISA; until identification of fungal pathogen
Mucormycosis L-AMB at 5 to 10 mg/kg QD First line (first choice)

ISA, 200 mg TID (days 1 to 2), then 200 mg QDb First line (second choice) or second linec

POS, 300 mg BID (day 1), then 300 mg QD Second linec,d

L-AMB combined with CAS or POS Severe cases (low clinical evidence)
Fusariosis L-AMB, 5 to 10 mg/kg QD First line or second line

VOR, 6 mg/kg BID (day 1), then 4 mg/kg BID First line or second linec,d

L-AMB combined with VOR Severe cases (low clinical evidence)
Scedosporiosis

S. apiospermum complex VOR 6 mg/kg BID (day 1), then 4 mg/kg BID First line (first choice)d

CAS, 70 mg QD (day 1), then 50 mg QD Second line (if VOR not possible, low evidence)
VOR combined with TBF or CAS Severe cases (low clinical evidence)

L. prolificans VOR 6 mg/kg BID (day 1), then 4 mg/kg BID First line (first choice)d

VOR combined with TBF Severe cases (low clinical evidence)

Adjuvant therapy
All types Reduce immunosuppression if possible Taper corticosteroids if feasible

GM-CSF (or G-CSF), IFN-�, WBC transfusion If neutropenia
Surgery Selected cases

Mucormycosis Surgery To consider for most cases (timing to assess individually)
Control hyperglycemia In particular for patients with diabetes
Hyperbaric oxygen (selected cases) Single site infection (e.g., sinusitis, soft tissue), ideally

in conjunction with surgery
Iron chelators: not recommended Lack of clinical evidence

aPOS, posaconazole; ISA, isavuconazole; VOR, voriconazole; L-AMB, liposomal amphotericin B; CAS, caspofungin; TBF, terbinafine; WBC, white blood cell; GM-CSF,
granulocyte macrophage colony-stimulating factor; G-CSF, granulocyte colony-stimulating factor; IFN, interferon. QD, once daily; BID, twice daily; TID, three times
daily.

bFor isavuconazole, 200 mg of active drug corresponds to 372.6 mg of isavuconazonium sulfate.
cConsider results of antifungal susceptibility testing if available (favor alternative antifungal regimen if MIC �8 �g/ml). Experts’ recommendations (no evidence).
dConsider therapeutic drug monitoring. Suggested targeted serum concentrations: �1 �g/ml and �5 �g/ml (based on recommendations for invasive aspergillosis, no
evidence for NAIMIs).
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Mucormycosis. Amphotericin B formulations are the mainstay of treatment for
mucormycosis. Liposomal amphotericin B therapy was associated with lower mortality
rates compared to other antifungal regimens and was a significant factor associated
with survival in large cohorts (48, 49). The potential benefit of administering high doses
of liposomal amphotericin B (10 mg/kg instead of 5 mg/kg) is debated and has not
been demonstrated until now, but it has been associated with a higher incidence of
nephrotoxicity (50). Experience with other formulations of amphotericin B (lipid com-
plex) is more limited (49). Posaconazole is mainly used as a second-line therapy in cases
of refractory disease or intolerance to amphotericin B, with a reported success rate of
about 60% (51). Its use as first-line treatment has been limited by variable bioavailability
of oral suspensions but should be further investigated with the advent of the new
intravenous formulation and the more stable gastroresistant tablets. Posaconazole is
recommended as antifungal prophylaxis in high-risk hematologic patients (52, 53).
However, it is noteworthy that its efficacy has been mainly demonstrated for the
prevention of invasive aspergillosis. Indeed, studies reported a predominance of mu-
cormycosis among breakthrough IMIs under posaconazole prophylaxis (5, 54). Recently,
isavuconazole has been approved as first-line treatment for mucormycosis on the basis
of a single-arm open-label trial showing a 67% rate of survival at day 42, which was
similar to that of matched controls treated by amphotericin B formulations from an
international registry (55). Experience with isavuconazole for antifungal prophylaxis is
limited, but breakthrough mucormycoses have been reported, especially in the setting
of refractory leukemia with persistent neutropenia (56). Correlation between in vitro
MICs and clinical efficacy remains an open question regarding the Mucorales-active
triazoles. Despite the absence of known mechanisms of resistance, Mucorales exhibit a
wide range of intraspecies MIC distribution for posaconazole and isavuconazole, with
some pathogenic species, such as Mucor circinelloides, exhibiting higher MICs compared
to the others (16, 57). Differences between testing methods have been reported for
isavuconazole (58). In murine models of invasive infection by Mucor circinelloides or
Rhizopus oryzae, posaconazole showed poor efficacy irrespective of MIC values (59, 60).
While there are no clinical breakpoints, AST results, when available, suggest caution for
the use of triazole monotherapy as the initial treatment of mucormycosis in case of high
MIC values. For amphotericin B, MICs are distributed in a narrower range, with values
rarely exceeding 4 �g/ml (16). One small retrospective study suggested that ampho-
tericin B MICs of �0.5 �g/ml were associated with a better response to therapy (9).
Most importantly, prompt initiation of amphotericin B therapy is crucial for outcome,
with a rate of mortality that was twice higher among patients for which therapy was
delayed (�6 days from diagnosis) (61).

The poor outcomes of mucormycosis with currently available monotherapies, has
stimulated interest in studying various antifungal combinations (62). While echinocan-
dins per se do not display significant antifungal activity against Mucorales, they may act
synergistically with amphotericin B. This effect may be related to an activation of the
immune system. Indeed, a small amount of beta-glucan is present in the cell wall of
Mucorales, but echinocandins can induce unmasking of beta-glucan, which triggers the
activity of polymorphonuclear neutrophils against the molds (63). Both Aspergillus and
Rhizopus spp. were shown to trigger interleukin-23 production by dendritic cells
following activation of dectin-1 by unmasked beta-glucan (64). The positive interaction
between amphotericin B and echinocandins was first described in murine models of
mucormycosis, with improved survival in the combination therapy group compared to
treatment with amphotericin B alone (65, 66). Few clinical data tend to support the
benefit of this combination, which is possibly limited to diabetic patients (67, 68).
Combined therapy of amphotericin B with posaconazole has also been suggested, but
a murine model failed to demonstrate the superiority of this combination over mono-
therapies, and clinical evidence is also lacking (59, 69). Overall, the potential benefit of
any drug combination for the treatment of mucormycosis remains doubtful and two
large retrospective studies of over 100 cases did not demonstrate a significant im-
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provement in survival (70, 71). Whether the availability of a better-absorbed posacona-
zole formulation (posaconazole tablets) or isavuconazole in combination with lipid
amphotericin B and the promise of earlier diagnosis of mucormycosis would result in
benefits of combination therapy remains to be seen.

Besides early initiation of antifungal therapy, surgical debridement is another cor-
nerstone in the treatment of mucormycosis, which emerged as a significant predictor
of improved survival in several studies (49, 72, 73). Patient selection is important for
improved outcomes since underlying diseases (hematologic malignancies, neutropenia,
and active malignancy), age, comorbidities, localization, and extent of disease are other
important factors associated with mortality (49, 71, 72, 74).

Fusariosis. Amphotericin B lipid formulations and voriconazole are the two treat-
ments of choice of disseminated fusariosis, and there is no evidence supporting the
benefit of one drug over the other (11). Analysis of 233 cases from an international
registry showed similar 90-day survival for patients treated with voriconazole and
amphotericin B lipid formulations, but amphotericin B deoxycholate was associated
with a lower probability of survival (75). A French series of 73 cases of invasive fusariosis
treated with voriconazole as primary or salvage therapy reported a 90-day survival of
42% (76). No antifungal susceptibility data were available in these studies, and there is
no evidence whether variations in voriconazole MIC may impact outcome. However,
one study reported a high rate of failure of therapy (11/12, 87.5%) among patients with
disseminated fusariosis who received voriconazole first-line treatment despite lack of in
vitro activity of this drug (MIC �16 �g/ml) (9). Actually, in vivo experiments in mice
showed that neither voriconazole nor amphotericin B lipid formulations demonstrated
any benefit compared to the untreated groups for the treatment of invasive fusariosis,
irrespective of the MIC values (77). Indeed, the only factors that were significantly
associated with improved outcomes in clinical studies were nonpharmacologic param-
eters, such as the recovery of neutropenia and the absence of concomitant corticoste-
roid therapy (75, 78–80). These observations lead to the conclusion that immune
reconstitution is the cornerstone for success in the management of invasive fusariosis.

Because of the poor outcome of invasive fusariosis, many clinicians opt for combi-
nations therapies, for which there is no demonstrated benefit apart from case reports
(75, 76, 81, 82). In one study of 44 cases of invasive fusariosis treated primarily by
combined amphotericin B and triazole therapy, mortality still remained as high as 66%
(78). In vitro interactions between voriconazole and amphotericin B against Fusarium
spp. show variable results with fractional inhibitory concentration indexes (FICI) clas-
sified as indifferent or antagonistic for the majority of strains and synergistic for only a
few isolates (83–85). The drug combinations showing the highest percentage of
positive interactions in vitro were (i) amphotericin B plus caspofungin or 5-flucytosine
and (ii) voriconazole plus terbinafine (83–85). The clinical efficacy of these combinations
is only supported by a few case reports, with an apparent publication bias (86). While
terbinafine is usually not recommended for the treatment of invasive mycoses, its
propensity for accumulation in skin and soft tissues might be interesting as adjuvant
therapy for fusariosis because of the high frequency of primary or secondary skin
lesions.

Some positive in vitro interactions between amphotericin B or voriconazole and
nonantifungal drugs (rifampin, ibuprofen, ciprofloxacin, metronidazole, and miltefos-
ine) have been reported (85, 87, 88). Activity of pentamidine (in vitro studies and animal
models) against Fusarium spp. has also been described (89, 90). The mechanistic
explanations and the clinical relevance supporting these potential synergisms are
unclear.

Scedosporiosis. Species of the Scedosporium apiospermum complex and Lomento-

spora (formerly Scedosporium) prolificans are the main etiological agents of scedospo-
riosis. Voriconazole has potent in vitro activity against S. apiospermum, whereas po-
saconazole is less active and isavuconazole or itraconazole only have marginal activity
(91, 92). Echinocandins display some degree of activity, but the minimal effective
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concentrations are 5- to 10-fold higher than those observed for Aspergillus spp., and
their efficacy was not demonstrated in a murine model (91, 93). Resistance to ampho-
tericin B is intrinsic among these species. L. prolificans is notoriously resistant to all
antifungal agents, with voriconazole being the most active in vitro (92). Interestingly, an
association between voriconazole MIC and outcome has been suggested by a murine
model of disseminated scedosporiosis (94). Scedosporiosis has a high potential for
cerebral involvement and dissemination and is associated with high mortality rates.
Voriconazole is the recommended therapy and has been associated with significant
improved survival compared to amphotericin B (95, 96). Again, nonpharmacologic
factors play an important role in the outcome of infection. Disseminated infection and
severe immunosuppression (i.e., hematologic cancer) are associated with poor prog-
nosis, while surgery may improve outcome (95, 96).

Synergistic interaction between voriconazole or itraconazole and terbinafine against
L. prolificans has been reported (97–99). However, a recent analysis combining all cases
from an international registry and previous published reports did not demonstrate any
benefit of the voriconazole-terbinafine combination compared to voriconazole mono-
therapy (55% versus 50% mortality rates, respectively) (96). One case report mentioned
successful treatment of L. prolificans osteomyelitis in an immunocompetent child with
a triple combination of voriconazole, terbinafine, and miltefosine (100). The combina-
tion of triazoles and echinocandins displayed various types of in vitro interactions
against S. apiospermum complex, with synergism in some cases, but failed to demon-
strate a significant benefit in a murine model of scedosporiosis (93, 97). It is also
interesting to note that nonantifungal drugs, such as colistin and some psychotropes
(e.g., chlorpromazine and trifluoperazine), exert some in vitro activity against Scedospo-
rium spp. (101–103). Voriconazole could potentiate the effect of colistin, although the
combination did not meet criteria for synergism in most cases (102). A potentiating
effect of a mucolytic agent (N-acetyl-L-cysteine) with conventional antifungals has also
been suggested (104).

NOVEL ANTIFUNGAL AGENTS

For many years, the treatment of severe invasive mold infections relied solely on
amphotericin B-based regimens. Despite the development of novel triazoles and
echinocandins, as well as less toxic formulations of amphotericin B, our antifungal
armamentarium is still limited to only three antifungal drug classes. Because fungi are
eukaryotes like humans, it is difficult to identify specific targets outside the cell wall and
the ergosterol component of the fungal cell membrane. Glycosylphosphatidylinositol
(GPI)-anchored proteins are important for cell wall integrity and attachment to host cell
surfaces (105). APX001A (E1210) is an inhibitor of fungal GPI biosynthesis (Gwt1p) with
broad in vitro antifungal activity against Aspergillus, Fusarium, and Scedosporium spp.
but inactive against Mucorales (106, 107). Albeit only fungistatic, this compound
recently proved to be effective in the treatment of murine invasive pulmonary asper-
gillosis and may be contemplated for clinical applications in the future (108). Another
investigational agent belonging to the orotomide class of antifungals, F901318 (F2G,
olorofim), which inhibits pyrimidine biosynthesis, exhibited potent fungicidal activity
against a large variety of multiresistant pathogenic molds, including Scedosporium/
Lomentospora spp. and Scopulariopsis spp. and variable activity against Fusarium spp.
(only fungistatic against F. solani) (109, 110). An extensive review of these compounds
can be found elsewhere (111).

Repurposing of old agents to treat NAIM has also been reported. For example,
miltefosine, a membrane phospholipid analogue used against leishmaniasis and
displaying modest antifungal activity per se, demonstrated synergistic interactions
with posaconazole or voriconazole against some isolates of Mucorales, Fusarium
spp., and L. prolificans (87). Another antiprotozoal agent, pentamidine, also dem-
onstrated in vitro activity and efficacy in murine models against Fusarium spp. (89,
90). In addition, colistin has been shown to display modest in vitro and in vivo
fungicidal activity against Mucorales (112). Several other potential candidates for
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novel antifungal therapies are contemplated but have not yet reached the stage of
clinical use.

NOVEL THERAPEUTIC APPROACHES

Because of the limited efficacy of antifungal drugs against non-Aspergillus molds,
various adjuvant therapies have been proposed with the goal to favor the activity of
antifungals by their action on the biological conditions of infection within the host.
These approaches may consist in: (i) modulation of the tissue microenvironment
(hypoxia, pH, iron, glucose, or nutrient availability) to the detriment of the fungus
and/or in favor of the host immune defenses, and (ii) nonspecific or specific enhance-
ment of the host immune response against the fungus (Table 1).

Despite the lack of activity in murine models (113), the use of hyperbaric oxygen has
been anecdotally reported for the treatment of mucormycosis with the rationale to
combat hypoxia associated with extensive tissue necrosis (10, 114). This approach
seems to be more beneficial among diabetic patients who are in ketoacidosis as acidic
environment contributes to fungal growth (114). It is unclear whether the reports
regarding the benefit of hyperbaric oxygen in mucormycosis represent publication bias
and concrete evidence for improved outcomes is still lacking.

Maintaining iron homeostasis is crucial for fungal survival and virulence in an
environment with low iron availability such as the human body. The iron chelator
deferasirox was effective in treating murine mucormycosis in diabetic ketoacidotic mice
(115). Because deferasirox demonstrated synergistic effect with liposomal amphotericin
B, this combination was tested in small placebo-controlled trial of neutropenic and
heavily immunosuppressed patients (116). Patients treated with adjunctive deferasirox
exhibited higher mortality rate compared to those treated by liposomal amphotericin
B alone, but were also more likely to present other factors of bad prognosis (active
malignancy, neutropenia, corticosteroid therapy). It is possible that deferasirox exerts
its efficacy best in the setting of diabetic ketoacidosis, where there is free excess tissue
iron (117).

Decompensated diabetes mellitus with hyperglycemia and ketoacidosis are well-
known risk factors of mucormycosis. Glycosylation of proteins (e.g., ferritin, transferrin)
and altered pH conditions may affect iron metabolism. Indeed, ketone bodies (�-
hydroxy-butyrate), glucose and iron favor growth of Mucorales and also enhance the
expression of the host receptor GRP78 of endothelial cells, which facilitate angioinva-
sion (118). Hyperglycemia was also associated with invasive fusariosis in hematologic
cancer patients (119). Control of glycemia and prevention of iron overload thus remain
important measures in patients at risk or treated for NAIMI.

As mentioned earlier, the quality of the host immune response is crucial for the
containment and resolution of invasive fungal infections. Because neutrophil recovery
is a factor of better prognosis in mucormycosis or fusariosis (79, 120), nonspecific
approaches to boost the host response, such as administration of granulocyte-
macrophage or granulocyte colony-stimulating factor (GM-CSF or G-CSF), are occasion-
ally recommended, but their efficacy remains to be demonstrated. Adjuvant G-CSF
therapy did not demonstrate any benefit for the treatment of murine mucormycosis
compared to posaconazole monotherapy (121). One prospective nonrandomized study
suggested good efficacy of granulocyte transfusions (GTX) for the control or the
prevention of recurrence of invasive fungal infections (122). However, GTX did not
demonstrate any benefit in addition to antifungal therapy for the treatment of invasive
aspergillosis and was even associated with worse outcomes due to pulmonary reac-
tions in a retrospective clinical study (123). Addition of recombinant interferon �1b
(rIFN-�1b) to GTX has also been tested without clear evidence of benefit (124).
However, a combination of IFN-� and nivolumab was successful for the treatment of
refractory mucormycosis in one case report (125). A study also showed some effect of
IFN-� and GM-CSF in enhancing the activation of polymorphonuclear neutrophils
against S. apiospermum and L. prolificans (126). GM-CSF could be more potent than
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G-CSF. Its use as adjuvant therapy was reported to be successful in a small case series
of rhinocerebral mucormycosis (127).

Besides these broad adjuvant therapies, more targeted approaches are under
development to achieve the goal of a specific and potent enhancement of the host
immune response specifically directed against the pathogenic fungus. Novel strategies
used against cancer, which consists in bioengineering genetically modified cytotoxic T
cells ex vivo to express CD19-specific chimeric antigen receptors (CARs) against tumors,
can also be applied for the treatment invasive fungal infections. Using the pattern
recognition receptor dectin-1, such T cells were generated to target specifically the
beta-glucan component of fungi (128). This approach was effective in reducing fungal
burden in murine models of pulmonary and cutaneous aspergillosis. Hijacking the host
immune system for targeted drug delivery is another innovative approach. Posacona-
zole is a lipophilic drug that accumulates within the cell membrane of human cells.
Transfusion of leucocytes loaded ex vivo with posaconazole can deliver very high drug
concentrations directly to hyphae, which was demonstrated in vitro and in a murine
model of invasive aspergillosis (129).

Another specific approach may consist in disrupting the interaction between the
fungus and the host cells to prevent tissue invasion. Pathogenesis of mucormycosis is
characterized by angioinvasion and even dead fungal hyphae are able to induce
vascular damages (130). Mucorales exhibit spore coat protein homologs (CotH), which
are absent from noninvasive fungi (131). Binding of CotH to the glucose-regulated
protein 78 (GRP78) of human endothelial allows angioinvasion (132). Treatment with
anti-CotH antibodies was able to prevent mucormycosis in diabetic ketoacidotic mice
(131).

Finally, a better understanding of the mechanisms of innate immunity against fungi
may also bring interesting perspectives for improved preventive strategies. An individ-
ualized approach of antifungal prophylaxis with stratification of risk factors for invasive
mold infections based on genetic analyses is contemplated for the future. Several single
nucleotide polymorphisms in pattern recognition receptors of host immune cells, such
as Toll-like receptor 4 (TLR4), dectin-1, and pentraxin-3 (PTX3), have been associated
with increased risk of invasive aspergillosis (133–135). Their association with NAIMIs is
unknown because of the rarity of the disease.

ADVANCES IN DIAGNOSTIC STRATEGIES

Early detection of NAIMI and start of effective antifungal therapy is crucial for
improving outcome. These infections are often characterized by the paucity and
nonspecificity of clinical signs at early stages, becoming apparent at the stage of
advanced tissue destruction (e.g., mucormycosis) or bloodstream dissemination (e.g.,
fusariosis). Current recommendations for the diagnostic approaches of NAIMIs are
presented in Table 3. The limited number of diagnostic tools and their poor sensitivity,
in particular for mucormycosis, is challenging. The yield of direct examination and
culture is particularly low, with the exception of disseminated fusariosis and scedospo-
riosis due to L. prolificans that can be detected in blood cultures in about 40% cases (75,
96). Currently available serum biomarkers (galactomannan and beta-glucan) do not
detect Mucorales. However, these biomarkers can be most useful for the early diagnosis
of fusariosis. Galactomannan cross-reacts with Fusarium spp. and was found to have a
sensitivity of 83% for the detection of invasive fusariosis (136). A similar sensitivity has
been observed for the beta-glucan test (137). Both markers were found to anticipate
diagnosis of fusariosis by cultures by several days (136, 137), which may be crucial for
prompt initiation of antifungal therapy and possibly improved outcomes. The role of
serum biomarkers for the diagnosis of other NAIMIs is unclear because of lacking data.
The galactomannan test can cross-react with some pathogenic species closely related
to Aspergillus spp. (e.g., Paecilomyces spp.) (138). The beta-glucan test should theoret-
ically detect most pathogenic mold species other than Mucorales, but data about its
actual performance are scarce (139).

Recent advances in molecular diagnosis may improve the rate of detection of

Minireview Antimicrobial Agents and Chemotherapy

November 2019 Volume 63 Issue 11 e01244-19 aac.asm.org 11

https://aac.asm.org


NAIMIs, in particular mucormycosis. Lack of standardization and limited availability of
these “in-house” PCRs still represent limitations (140). Millon et al. have developed a
multiplex quantitative PCR targeting the most relevant pathogenic Mucorales with a
sensitivity of about 80% for direct detection of mucormycosis in serum (141, 142). CotH
also represents a specific marker of mucormycosis that can be detected by PCR in urine
with a good sensitivity and specificity, as suggested by a murine model and a small case
series of proven mucormycosis in humans (143). The cell wall polysaccharide �-1,6-
mannan, common to both ascomycetous fungi and Mucorales, may also represent an
interesting target for serological tests, such as lateral-flow immunoassays, for “point of
care” diagnosis of NAIMI, including mucormycosis (144). Analyses of volatile metabolite
profiles in breath samples of mice or human patients with mucormycosis showed
distinct signatures for each Mucorales species (145). These latter findings could open
new possibilities for rapid and noninvasive detection of mucormycosis. Advances in
radiological technologies also deserve mention. Use of Aspergillus-specific tracers (e.g.,
siderophores and monoclonal antibodies) for immuno-PET detection is investigated,
but such approaches for NAIMIs are still lacking (146–148). The immuno-PET approach
shows promise as a theragnostic tool in mold infections (148).

CONCLUSIONS

NAIMIs remain uncommon diseases that are still associated with desperately high
mortality rates despite advances in diagnostic and therapeutic approaches in medical
mycology. These infections must be managed in a multilayered and multidisciplinary
approach considering multiple parameters as determinants for outcome (Tables 1 and
2). Besides the inherent activity of antifungal drugs, the potential of recovery of the
host immune system and the evolution of the underlying medical disease are key
determinants of prognosis. Surgery also plays an important role for some of them. The
attending physician should keep in mind that the outcome will be mainly dependent
on these nonpharmacologic parameters and only modestly influenced by the choice of

TABLE 3 Recommendations for the diagnostic approach of NAIMIsa

Type of NAIMI Diagnostic approaches Comments

All (general principles) Daily clinical assessment for high risk patients High index of suspicion for any suggestive clinical signs/symptoms
Low threshold for imaging (e.g., CT) Stage the disease and assess extent of dissemination
Histopathology/culture of deep respiratory specimens

(BAL) and/or tissue samples
Obtain deep tissue sample whenever possible

Diagnosis at the genus and ideally at species level MALDI-TOF, sequencing (selected cases)
Antifungal susceptibility testing (reference lab) Consider in specific situations (see below)
Fungal biomarkers (galactomannan and beta-glucan) Consider in specific situations (see below)
Molecular tests (PCR), immunohistochemistry and in

situ hybridization in tissue (reference lab)
Investigational

Mucormycosis Molecular tests (PCR) Pan-Mucorales PCR in tissue or serum (reference lab, currently
limited availability)

Antifungal susceptibility testing POS and ISA, large MIC distribution (clinical relevance unknown);
AMB, possible association MIC/outcome
(limited retrospective data)

Fusariosis Blood cultures Sensitivity about 40%
Galactomannan test (serum, BAL) Sensitivity about 80% (serum)
Beta-glucan test (serum) Sensitivity about 80%
Antifungal susceptibility testing VOR, POS, ISA, and AMB, large MIC distribution

(clinical relevance unknown)

Scedosporiosis Beta-glucan test (serum) Sensitivity unknown (lacking data)
Blood cultures: L. prolificans only Sensitivity about 40%
Antifungal susceptibility testing

S. apiospermum complex Not indicated (predictable MIC)
L. prolificans Usually not indicated. VOR: possible association with outcome

(animal model only)
aBAL, bronchoalveolar lavage; MALDI-TOF, matrix-assisted laser desorption ionization–time of flight; POS, posaconazole; ISA, isavuconazole; VOR, voriconazole; AMB,
amphotericin B.
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the antifungal drug. While continuous efforts in research of new fungal targets are
warranted, it is time to enter in a new concept of antifungal therapeutic approach,
which includes the dynamic interactions between the drug, the fungus, and the host
and to consider the host immune system as a major ally that can be used for more
efficient and targeted therapeutic strategies.
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