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The discovery of antibiotics in the early twentieth century  
revolutionized medicine1. However, it is now known that 
antibiotics are not the miracle drugs they once were thought 

to be. Rather, antibiotics can and do fail, sometimes with deadly 
results. One reason that this happens is because the bacteria they 
target acquire antibiotic resistance mutations, rendering the anti-
biotics ineffective. A second, increasingly appreciated reason that 
anti biotics fail is because the bacteria themselves use endogenous 
mechanisms to evade stress, including antibiotic exposure.

One of these mechanisms is persistence. Bacterial cells in the 
persister state are not antibiotic-resistant mutants. Rather, they  
have differentiated into a phenotype that has a high tolerance for 
antibiotics2–4. The resulting nondividing cells thus are able to survive  
until the environmental stress, such as nutrient starvation or anti-
biotic exposure, is removed. Once relieved, the persisters then 
revert back to the actively growing state and repopulate the original 
population. In wild-type Escherichia coli, the frequency of persisters 
in a planktonic bacterial population is only about 1 in a million. 
However, in stationary cultures and biofilms, complex multicellular 
bacterial communities that are highly resistant to antimicrobials, 
the frequency increases substantially5, up to 1 in 100. The role of 
persisters in mediating antibiotic resistance has stimulated renewed 
efforts to understand the molecular mechanism(s) that underlie the 
persister phenotype.

In the last decade, it has become clear that gene pairs known 
as toxin-antitoxin (TA) systems act as effectors of dormancy and 
persistence6–8. TA gene loci9,10 are highly abundant on bacterial 
plasmids11,12, phages13 and chromosomes14. They are composed of a 
toxin, which causes growth arrest by interfering with a vital cellular 
process, and a cognate antitoxin, which neutralizes the toxin activity 
during normal growth conditions15. Under conditions of stress the 
antitoxins are selectively degraded. This leaves the toxins to exert 
their toxic effects, which leads to growth arrest and dormancy16,17. In 
this Review, we highlight recent functional and structural studies of 
systems and discuss their increasingly expanding roles in bacterial  
physiology. We also describe new insights into the mechanisms, 
especially conditional cooperativity, by which TA systems regu-
late the transition between growth and persistence. Finally, we 
discuss the potential for targeting these systems for antimicrobial 

drug discovery. Given the pressing need for new antibiotics, novel 
approaches that target TA systems and the processes that regulate 
them are warranted.

Toxin-antitoxin systems
The first two TA gene loci were discovered more than three decades 
ago, when they were revealed to play a role in plasmid maintenance11,12 
through a then unknown mechanism. Namely, the products of the 
TA genes killed the progeny that did not retain the plasmid. These 
cells died because the ‘antidote’ antitoxins, which are highly labile 
compared to their cognate toxins, could not be regenerated in  
the absence of the plasmid. Thus, eventually, the plasmid-free cells 
contained only the stable toxins, whose activities ultimately resulted 
in cell death16,17. Because of the unique mechanism used to main-
tain the plasmid, this process was referred to as post-segregational  
killing (PSK)12.

Since their initial discovery, thousands of TA operons have  
been identified not only in plasmids11,12 and phages13 but also, 
un expectedly, on the chromosomes of most free-living bacteria, 
with some species (such as Mycobacterium tuberculosis) containing 
as many as 88 TA loci18. Unlike plasmid-based TA genes, chromo-
somal TA loci do not mediate PSK but instead function to ensure 
the survival of the population in response to stress19,20. Currently, 
there are six classes of TA systems, which are distinguished on 
the basis of the mechanisms used by the antitoxins to neutralize  
the activities of the toxins. While the product of the toxin gene is 
typically a protein, that of the antitoxin gene is either a noncoding 
RNA (in TA systems I and III) or a low-molecular-weight protein 
(in TA systems II, IV, V and VI). The six classes of TA systems in  
E. coli are shown in Figure 1.

Well-established TA systems: types I–III. Type I TA systems have 
a noncoding RNA antitoxin and a protein toxin. In these systems, 
small regulatory antisense RNAs (sRNAs) base-pair to the mRNA 
of the toxin to inhibit its translation21. Under normal growth con-
ditions, this duplexing inhibits ribosome binding and the RNA 
duplex is rapidly degraded by RNase III22. However, under condi-
tions of stress, the pool of antitoxin sRNA is reduced, resulting in 
the translation of the now non-duplexed toxin mRNA23. The toxins 
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Bacterial persister cells constitute a subpopulation of genetically identical, metabolically slow-growing cells that are  
highly tolerant of antibiotics and other environmental stresses. Recent studies have demonstrated that gene loci known as 
toxin-antitoxin (TA) modules play a central role in the persister state. Under normal growth conditions, antitoxins potently 
inhibit the activities of the toxins. In contrast, under conditions of stress, the antitoxins are selectively degraded, freeing  
the toxins to inhibit essential cellular processes, such as DNA replication and protein translation. This inhibition results in  
rapid growth arrest. In this Review, we highlight recent discoveries of these multifaceted TA systems with a focus on the newly 
uncovered mechanisms, especially conditional cooperativity, that are used to regulate cell growth and persistence. We also 
discuss the potential for targeting TA systems for antimicrobial drug discovery. 
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themselves are short hydrophobic peptides that insert and disrupt 
membranes, leading to a loss of membrane potential and, in turn, 
growth arrest (Fig. 1). The hok/sok (parB locus) gene pair on plas-
mid R1 was the first type I TA system discovered12. Multiple hok/sok 
homologs have since been identified on chromosomes throughout 
the bacterial kingdom, including that of E. coli24.

Type II TA systems are the largest and best-studied TA system 
class, with thousands of type II TA loci identified in most free-living 
bacteria, such as E. coli (Fig. 2a)25. Unlike the type I antitoxins, the 
type II antitoxins are proteins. They typically have two domains, one 
that binds DNA26 and a second that binds and inhibits the activity  
of the cognate protein toxin (Fig. 1)14,27. The antitoxins also often 
bind the promoters of their own operon in order to repress tran-
scription; in most14,26 but not all28 cases, the toxins function as  
co-repressors. In some cases, they bind the promoters of other 
genes29. Type II TA systems are regulated by distinct differences 
in the cellular lifetimes of the antitoxins and toxins16,17. Namely, 
the antitoxins are highly susceptible to proteolysis, whereas their  
cognate toxins are comparatively stable. Thus, in response to stress, 
the antitoxins are selectively degraded. This leads to growth arrest 
due to the cellular effects of the now free toxins. Type II toxins func-
tion by inhibiting replication (i.e., by inhibiting DNA gyrase27,30) 
or translation (i.e., by cleaving mRNA31–34, inactivating ribosome 
elongation factors35,36 or inactivating glutamyl-tRNA synthetase 
(GltX)37,38, among other processes).

The majority of type II toxins are endoribonucleases (RNases), 
which often adopt a microbial RNase fold (similar to those of RNase 
T1 and RNase SA)39,40. The ribosome-dependent RNase toxins bind 
directly to the A site of the ribosome, where they cleave ribosome-
associated mRNA (Fig. 2b; RelE41,42, YoeB43, YafO44, YafQ45, HigB46–48 
in E. coli). Other RNase toxins are ribosome independent, including 
MqsR31,34, which also adopts a microbial RNase fold39, and MazF, a 
functional dimer with a unique fold (Fig. 2c)40,49. Unlike those of 
their highly similar RNase toxin counterparts, the structures of both 
the cognate antitoxins and the oligomeric toxin–antitoxin com-
plexes differ considerably from one another (Fig. 2d,e)39,50–52.

In type III systems, as in type I systems, the antitoxin is a small 
RNA23. However, instead of duplexing with toxin mRNA to prevent 
toxin synthesis, the antitoxin forms pseudoknots that bind directly 
to the toxin (Fig. 1 and Fig. 2e, right). The founding and best- 
studied member of the type III class is toxIN53,54. The toxN toxin 
gene is preceded by a short palindromic repeat, which is itself pre-
ceded by a tandem array of nucleotide repeats. ToxN, an RNase, 
cleaves not only the toxIN transcript—into the active 36-nucleotide 
antitoxin sRNAs—but also other mRNAs. Its activity is inhibited 
when it associates with toxI sRNA, which blocks its active site.

Newly discovered TA systems: types IV–VI. The most recently 
identified TA systems are types IV–VI. In type IV, as in type II, both 
the antitoxin and toxin are proteins55. However, whereas in type II  
systems antitoxins and toxins bind to form a tight complex, the  
antitoxin and toxin of the type IV system never interact. Instead, the 
toxin prevents growth by binding and inhibiting the polymeriza-
tion of the bacterial cytoskeletal proteins MreB and FtsZ, thereby  
blocking cell division. The antitoxin antagonizes toxin activity by 
promoting and stabilizing MreB and FtsZ cytoskeletal filament 
bundling (Fig. 1)56. In the only known type V system, the antitoxin 
(GhoS) is an RNase that, under growth conditions, cleaves the toxin 
(GhoT) mRNA57. However, under conditions of stress, the mRNA 
of GhoS is degraded by the type II toxin MqsR. This results in  
the translation of GhoT, a small hydrophobic peptide that, like the 
toxins from type I systems, damages the cell membrane (Fig. 1). 
Thus, this is an example of one TA system (ghoST) that is directly 
regulated by that of another (mqsRA)58. The most recently discov-
ered TA system (type VI) is composed of a protein toxin, SocB, and 
a protein antitoxin, SocA. The toxin blocks replication elongation 
by binding directly to the β sliding clamp DnaN and outcompeting 
other clamp-binding proteins. The antitoxin SocA is a proteolytic 
adaptor protein that neutralizes SocB toxicity by promoting its  
degradation by ClpXP (Fig. 1)59.

TA systems and their role in persistence
It is now well established that TA systems, especially type II TA  
systems, play a central role in persistence2,7,60–62. The first gene iden-
tified as directly affecting persistence was the E. coli gene hipA (high 
persister protein A), encoding a kinase that inactivates glutamyl-
tRNA synthetase37,38. Its role in persistence was discovered when a 
variant of hipA (hipA7, which contains two mutations, G22S and 
D291A) was isolated that exhibits a ~100- to 1,000-fold increase 
in persistence60. Although this mutant was identified more than 
three decades ago, the mechanism by which it increased persistence 
remained elusive until this year. First, structural and functional 
studies showed that this mutant increases persistence because it 
destabilizes the higher-order oligomers that form when the HipAB 
complexes bind the hipAB operator. This destabilization exposes 
the HipA active site, rendering the toxin more active63. A second 
study then revealed that HipA activity leads to the ppGpp-mediated  
activation of the type II RNase toxins64, whose activities ultimately 
lead to persistence.

The central role of type II RNase toxins in persistence was also 
demonstrated in landmark microarray experiments on isolated  
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Figure 1 | Toxin-antitoxin systems. Toxins are shown in orange and 
antitoxins in blue; activities that are nontoxic are in black font, whereas 
those that are toxic are in gray. Type i: the srNA antitoxin base pairs with 
toxin mrNA to inhibit translation; the membrane lytic toxins function 
to depolarize the cell membrane and disrupt ATp synthesis. Type ii: the 
antitoxin and toxin are proteins; under growth conditions, the toxin is 
bound to the antitoxin, which inhibits its activity. Both the antitoxin and, in 
most cases, the TA complex bind the TA promoter to repress transcription. 
Under stress conditions, cellular proteases such as lon and ClpXp are 
activated that preferentially cleave the antitoxins, freeing the toxins to 
inhibit growth by inhibiting translation or replication. Type iii: the antitoxin 
srNA is processed by the endoribonuclease (rNase) toxin, resulting in the 
formation of rNA pseudoknot–toxin complexes, which inhibit toxin activity. 
Type iv: the protein antitoxin stabilizes bacterial filaments, while the protein 
toxin destabilizes them; in the absence of the antitoxin, this toxin-mediated 
destabilization inhibits cell division. Type v: the antitoxin GhoS is an rNase 
specific for the toxin ghoT mrNA; under conditions of stress, the mrNA of 
the antitoxin is degraded by the Mqsr toxin, resulting in GhoT translation 
and membrane lysis. Type vi: the SocA antitoxin is an adaptor protein 
that binds the SocB toxin to promote its degradation by ClpXp. When not 
degraded, the toxin binds the sliding clamp to inhibit DNA replication.
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E. coli persisters. Namely, multiple type II toxins, especially RNase 
toxins, were highly upregulated in persister as compared to non-
persister cells7,8. A direct role for RNase toxins in persistence was 
then confirmed using both ectopic expression experiments (ecto-
pic expression of RNase toxins increases persistence) and TA gene  
deletion experiments (the simultaneous deletion of ten TA systems 
in E. coli resulted in a 100-fold reduction in persistence)6,7,61,62. Most 
recently, it was shown that the systematic deletion of individual type 
II TA systems from Salmonella also reduced macrophage-induced 
persisters, demonstrating that 14 distinct type II TA modules in 
Salmonella are activated once they are phagocytosed65.

The role of TA systems in persistence was 
recently expanded in a breakthrough study 
in which it was shown that not only type II 
but also type I toxins are directly linked to 
persistence66. In this work, the authors dem-
onstrated that Obg, a universally conserved 
GTPase, induces persistence by activating  
the transcription of the type I hokB toxin. 
The HokB membrane-associated peptide ulti-
mately results in membrane depolarization, 
which leads to persistence. Unexpectedly, 
the authors also showed that this function 
of Obg depends on ppGpp, to which it may 
bind directly. Although the molecular basis  
of hokB activation by Obg is not yet known, 
this work nevertheless demonstrates a func-
tional convergence through (p)ppGpp of 
both type I and type II toxins in persistence. 
Collectively, these data demonstrate that entry 
to and exit from the persister state appear  
to be intricately linked to the expression of 
toxins and antitoxins.

Indeed, mathematical modeling studies 
have demonstrated that the unique features 
of TA systems readily give rise to two stable 
populations of bacteria, a small dormant 
population and a rapidly growing population  
(Fig. 3)67. Stated most simply, cells enter the 
persister state when the toxin concentration 
exceeds a threshold set by that of its antitoxin. 
How is this achieved within a population of 
growing cells? One possibility is that some cells, 
owing to local accessibility to nutrients, experi-
ence micro-starvation conditions. This results 
in an increase in the levels of the (p)ppGpp  
alarmone, which activates the Lon protease 
and results in antitoxin degradation64,68,69. The 
net result is a switch from a low to high TA 
ratio, allowing the now free toxin to exert its 
toxic effects. However, although this provides 
a molecular description of how cells enter the 
persister state, the molecular mechanisms 
that allow cells to exit the persister state have 
proven more elusive. Critically, a number of 
recent studies have demonstrated that one 
mechanism potentially used by type II TA 
systems to exit persistence is a phenomenon 
known as conditional cooperativity26,70,71.

conditional cooperativity
Most TA loci, especially type II TA loci, are 
transcriptionally autoregulated72. This is 
because the antitoxins contain two domains, 
one that binds DNA and a second that binds 
their cognate toxins. The antitoxins, via their 

DNA binding domains, bind directly to one or more operators 
located in the promoters of their respective TA loci, thereby repress-
ing transcription. In most, but not all, cases, the cognate toxins bind 
the antitoxins to enhance DNA binding. This increased affinity 
results in a more potent repression of transcription than is observed 
with the antitoxins alone14,26,70,71.

The toxin-binding domains of antitoxins are often intrinsically 
disordered (IDPs, intrinsically disordered proteins) in the absence of 
toxin47,51,73–75. Although IDPs are present throughout the eukaryotic 
proteome, where they play essential roles in signaling, among other 
processes76–79, they are less prevalent in the prokaryotic genome. 
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Figure 2 | TA systems in E. coli. (a) TA loci in the E. coli genome (type i systems not shown).  
Types iv and v loci are underlined; the rest are type ii. (b) ribosome-dependent rNase 
toxins (ribbons with transparent surfaces); all adopt the microbial rNase fold. (c) ribosome-
independent rNase toxins; although Mqsr adopts a microbial rNase fold, it does not  
require the ribosome for activity. MazF is a dimer. (d) TA structures. Toxins in orange/gold; 
antitoxins in blue/light blue. TA systems with a ribosome-dependent toxin have a blue border 
(pDB iDs: HigBA, 4MCX47; relBE, 4FXE51; DinJYafQ, 4Q2U90; YefMYoeB, 2A6Q95). MqsrA, 
which is an rNase with structural characteristics of ribosome-dependent toxins but functional 
characteristics of ribosome-independent toxins, is bordered in magenta (3Hi239). The MazEF 
system is bordered in orange (4MDX96). The HipAB system, in which the toxin is a kinase,  
is bordered in brown (4YG763). Structures of antitoxins only are in blue (YfjZ, 2EA9, the sequences 
of YafW and CbtA are highly similar to YfjZ (‘% id’ is the percentage of sequence identity  
to YfjZ); GhoS, 2llZ57), while toxins are in orange (HicA, 4C2697). cc, regulated  
by conditional cooperativity; no cc, not regulated by conditional cooperativity; ribo-mrNA, 
structure of the ribosome–mrNA–toxin complex is known (relBE41, YoeB43, HigB48); mrNA, the 
toxin–mrNA complex is known (MazF96); DNA, structure of the antitoxin–promoter (MqsA91,98)  
or the TA complex–promoter (HipAB63) is known. (e) Structures of well-studied TA systems  
not present in E. coli: phd/Doc (3K33, ref. 70; left; type ii TA system), CcdBA (3G7Z75;  
left middle, type ii TA system), Kid/Kis (1M1F99; middle, type ii TA system), vapBC (3TND73;  
right middle, type ii TA system) and CptiN (4rMo100; right, type iii TA system). Antitoxins  
and toxins are colored as in d.
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Antitoxins are the notable exception, in that most antitoxin binding 
domains are IDPs in the absence of toxin51,75,80,81. What is the advan-
tage of the disordered state? One hypothesis is that the IDP nature 
of the toxin-binding domain may make antitoxins more susceptible 
to proteolytic degradation than their toxin counterparts82. A second 
is that they can mediate high-affinity interactions with only a lim-
ited number of residues: that is, IDPs are able to bind to extended 
surfaces that would require four- to five-fold more residues if  
the domain were folded83. A third is that they are important for 
TA system regulation70,75. The latter has been experimentally dem-
onstrated in a number of TA systems in which the IDPs function 
to couple transcription with toxin activity and inhibition84. They  
also appear to be especially important for systems regulated by  
conditional cooperativity, as described below.

In 1998, it was discovered that in the Doc/Phd TA system,  
large excesses of toxin derepressed rather than repressed tran-
scription85, a phenomenon that has since been named conditional  
cooperativity70. A similar observation was made shortly thereafter 
(Fig. 4a): namely, that the switch from a repression to a derepression 
complex was accompanied by a change in the oligomerization state 
of the TA complex itself. This group studied the Type II TA system 
CcdB/CcdA (comprising control of cell death protein B, the toxin 
that inhibits DNA gyrase, and protein A, the antitoxin). Maximal 
DNA binding and repression was observed when the ratio of CcdB 
to CcdA was 1:1 (CcdB2–CcdA2). However, CcdB:CcdA ratios 
greater than 1 abolished DNA binding (Fig. 4b). This resulted in 
enhanced, rather than repressed, transcription26. Thus, the authors 
hypothesized that under conditions of excess toxin, the transcription 
and translation of both CcdA and CcdB would increase, eventually 
leading to a ratio that permitted cells to exit the persister state and 
resume robust growth. Since then, additional TA systems have also 
been shown to be regulated by conditional cooperativity, including 
parDE86, relBE71 kid/kis87, vapBC58 and phd/doc85. Critically, incor-
porating conditional cooperativity into mathematical models of  
TA regulation have shown that it can provide the bistability neces-
sary to support two populations within a single culture, one actively 
growing and one dormant88,89. Thus, the prevalence of conditional 
cooperativity in the type II TA family has led to the suggestion 
that it is a mechanism by which TA transcription is dynamically 
adjusted to the toxin concentration in the cell and, furthermore, that 
it might provide a mechanism for exiting the persister state. In spite 

of the insights provided by these recent experimental and modeling  
studies, the detailed mechanisms by which cells emerge from  
the persister state to repopulate the original population remain to 
be elucidated.

molecular basis of conditional cooperativity
How these distinct TA complex oligomerization states alter anti-
toxin affinity for DNA is also now being unraveled at a molecular 
level. RelB alone has only weak affinity for its operator (Fig. 4c). In 
contrast, the RelB2–RelE (B2E) complex binds extremely tightly and 
potently inhibits relBE transcription. However, further increases  
in RelE toxin concentration destabilize DNA binding, with DNA 
binding reaching affinity levels similar to those for RelB alone at 
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increasing concentrations of toxin destabilize DNA binding, resulting in 
robust transcription. (b) Schematic of conditional cooperativity using 
electrophoretic mobility shift assays. left, increasing concentrations of 
antitoxin results in enhanced DNA binding; most promoters have multiple 
operators, leading to multiply shifted bands. right, in the presence of 
antitoxin (at concentration indicated by *), increasing concentrations of 
toxin results in robust DNA binding until a certain TA ratio is reached,  
after which binding is reduced. (c) in the absence of relE (orange/
gold), relB (blue/light blue) binds its promoter, which has two adjacent 
operators, with weak affinity (only one shown in top panel). At a 2:1 
relB:relE ratio (B2EB2E), both operators are bound by the relB dimers  
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DNA modeled). (d) in the absence of Doc (orange/gold), phd (blue/light 
blue) binds its promoter, which has two adjacent operators, with weak 
affinity (only one shown in top panel). At phd:Doc ratios of 4:1, 4:2 or 4:3, 
DNA binding is robust (middle top panel; the 4:3 ratio is shown: p2DDp2D). 
in these oligomers, the central Doc toxin interacts with adjacent phd 
dimers via a high-affinity (H) and a low-affinity site (l). Further increases  
in the concentration of Doc lead to a phd:Doc ratio of 1:1 (p2D2).  
in this state, all the Doc toxins bind the phD antitoxins at only the  
high-affinity sites. This leads to derepression because the newly  
bound Doc toxin would clash with the toxin in an adjacent complex  
(newly bound toxin at the high-affinity site in black, indicated by arrows; 
pDB iD 3K33 (ref. 70); interaction with DNA modeled).
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ratios of 1:1 (RelB2–RelE2, B2E2)71. The three-
dimensional structure of the B2E2 complex 
revealed why it is not compatible with DNA 
binding51. As shown in Figure 4c, two B2E 
(B2E–B2E) complexes bind the relEB operator 
without clashing. However, increasing con-
centrations of RelE leads to the formation of 
two B2E2 complexes. This destabilizes DNA 
binding because the additional RelE molecules 
(B2E–B2E → B2E2–B2E2; Fig. 4c, bottom) clash 
with the neighboring proteins. Thus, the B2E2 
complexes are unable to bind both operators 
simultaneously, resulting in derepression of 
the operon and an increase in transcription.

Similarly, the Phd antitoxin of the Phd/Doc 
TA system also binds its promoter with  
moderate affinity compared to the Phd2–Doc 
complex85. Increasing concentrations of the 
Doc toxin, like those of RelE, destabilize  
DNA binding, with very little DNA binding 
observed at 1:1 ratios and higher70. However, 
the structural mechanism is different than that 
for the RelB/RelE system. That is, PhD binds 
Doc at two sites, a high-affinity (H) binding 
site and a low-affinity (L) binding site (Fig. 4d).  
The affinity of one or two PhD molecules for 
the phd/doc promoter is weak. However, the 
addition of the Doc toxin increases the affinity 
considerably because Doc stabilizes the PhD 
molecules by binding one of the PhD proteins 
via the H interface and the second via the  
L interface. This stabilization, in addition to 
the increased avidity due to the bridging of two 
adjacent Phd dimers on the operator, enhances 
the affinity of the complex for DNA70. Up  
to two more Doc molecules can bind this  
complex without destabilizing binding, as they bind the available 
H sites of the free PhD molecules. However, further addition of  
Doc results in fully occupied H sites, which leads to steric clash-
ing when bound to DNA. As a result, the repressor complex is  
destabilized and transcription increases. Although the molecular 
details differ, the ccdAB TA system uses a similar mechanism of 
autoregulation, and thus the two systems represent an interesting 
case of convergent evolution75.

Importantly, while a number of type II TA systems are regulated by 
conditional cooperativity, some are not (Fig. 5a). This includes din-
JyafQ90 and mqsRA28 (Fig. 5b). In the case of DinJ/YafQ, both the DinJ 
antitoxin and the YafQ TA complex bind and repress transcription to 
the same extent. In the case of MqsR/MqsA, MqsA binds its promoter 
with extremely tight affinity (Kd ~800 pM), resulting in a clamping of 
the antitoxin about its DNA operator91. Addition of the MqsR toxin, 
however, does not enhance binding but instead destabilizes it, as 
the binding sites of MqsR and DNA on MqsA overlap: that is, their 
binding is mutually exclusive. Thus, the mechanism(s) used by these  
systems to dynamically adjust antitoxin and toxin concentrations in 
the cell once they have entered the persister state are still unknown.

outlook: targeting persistence by targeting TA systems
Each year, 2 million people in the United States become infected 
with bacteria that are resistant to antibiotics, with an estimated 
23,000 of those dying as a result of those infections92. It is now 
clear that persisters are likely to play a role in at least some of  
these deaths. This is because persisters underlie latent infections  
and post-treatment relapse. Furthermore, the repeated rounds of 
antibiotic treatments needed to treat these recurrent infections 
increase the likelihood that the bacteria will become resistant to  

the antibiotics used to eradicate them. Thus, new strategies for 
eliminating persisters not only will reduce the number of recurrent 
infections but also are expected to have the added benefit of reduc-
ing the number of antibiotic-resistant mutations.

The importance of TA systems in persistence make them natu-
ral targets for drugs that either prevent persistence or facilitate exit 
from the persister state. One possible approach is to develop drugs 
that inhibit the toxins, thereby inhibiting entry into growth arrest. 
Because most free-living bacteria contain multiple TA systems, it is 
still not clear whether inhibiting a single TA system (toxin) will be 
sufficient to inhibit persistence; rather, it might require a cocktail 
of inhibitors. Another possibility is to target biological processes 
that regulate TA levels. The feasibility of this approach was recently 
demonstrated by Lewis and colleagues, who showed that the com-
pound acyldepsipeptide (ADEP4), which binds the ClpP protease, 
eliminates persisters93. It does so by causing ClpP to become a non-
specific protease that targets both nascent and unfolded proteins for 
degradation. Remarkably, they showed that using both ADEP4 and 
rifampicin completely eradicated the chronic biofilms of both the 
astomyelitis-associated strain UAMS-1 and Staphylococcus aureus. 
Although it will be important to determine whether this interven-
tion is applicable to other pathological organisms, these results are 
very exciting. Finally, another less direct but also intriguing strategy 
is the design of peptides that inhibit DNA gyrase. For example, the 
structure of the ParE toxin was used to design a series of peptides 
that completely inhibited bacterial DNA gyrase94. Clearly, cur-
rent efforts to understand the molecular basis of persistence and 
to determine how these recalcitrant cells can be effectively targeted 
by novel therapeutics suggest that new effective antibiotic therapies 
may be on the immediate horizon. 

Typical type II TA systems Noncanonical type II TA systems

Weak DNA binding
Moderate repression

Strong DNA binding
Strong repression

Toxin is a co-
repressor; no binding
enhancement

Toxin and DNA
binding are mutually
exclusive

Toxin is a co-
repressor; enhances
DNA binding
Some systems exhibit
conditional
cooperativity

MqsA

MqsR

105° 120°

a

b

Figure 5 | characteristics of type II TA systems that exhibit or do not exhibit conditional 
cooperativity. (a) Many TA systems exhibit conditional cooperativity. in these cases, the toxins 
function as co-repressors that enhance DNA binding. Two systems that do not exhibit conditional 
cooperativity are DinJ/YafQ (the YafQ toxin does not enhance DNA binding and increasing 
concentrations of YafQ do not result in increased transcription) and MqsrA (Mqsr functions 
solely as a derepressor). (b) Cartoon and structural illustration of the MqsA dimer (left; pDB iD 
3GN5; ref. 39), the MqsA–operator complex (middle; binds DNA with a subnanomolar Kd; pDB 
iD 3o9X91) and a model of the Mqsr2–MqsA2 complex (right; modeled using pDB iDs 3GN5 and 
3Hi2; ref. 39). Mqsr, which also binds MqsA with a subnanomolar Kd, destabilizes DNA binding28.
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