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Purpose of review

Current genotypic resistance tests fail to amplify drug-resistant minority variants when they are present
below 20% of the total virus population. Next-generation sequencing (NGS) addresses this issue and is
being introduced into diagnostic laboratories. This review gives an overview of the resistance tests currently
used and explores the opportunities and challenges that NGS genotypic resistance tests will bring.

Recent findings

The technical challenges of NGS, such as PCR and sequence-related errors, are being addressed and
various assays are currently undergoing technical validation for clinical use. Although not conclusive, the
data seem to suggest that NGS will be valuable for low genetic barrier drugs and certain types of tests
such as the HIV-1 tropism test. Clinical validation of the reporting and interpretation of minority variant
results are essential when laboratories start reporting these results.

Summary

The first wave of NGS technology is being rolled out in diagnostic laboratories. Antiviral test benefits
include increased sensitivity and eventually cheaper antiviral resistance tests. There is a risk that low
percentage minority variants may be over interpreted. This could result in antiviral drugs, which may have
been effective, being possibly denied to patients if proper clinical validation studies are not performed.
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INTRODUCTION

Many antiviral treatment guidelines exist that con-
tain advice on when to request antiviral resistance
tests. We are, however, on the dawn of more sensi-
tive and cheaper next-generation sequencing (NGS)
tests that will change the way we monitor antiviral
resistance and influence the clinical management of
patients. In spite of a wealth of publications, we still
have a lot to learn on how to use the technology in a
clinical setting. The aim of this review is to provide
an overview of current testing practice and how NGS
might change the landscape in the future.
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TYPES OF RESISTANCE TESTS

Antiviral susceptibility can be determined by phe-
notypic and genotypic methods. Phenotypic tests
determine resistant phenotype based on the calcu-
lation of inhibitory virus growth concentrations for
the antiviral drug. The main advantage is an unam-
biguous interpretation of laboratory findings whilst
providing genotype–phenotype correlations of the
associated mutational change. It is, however, time-
consuming, expensive and not sensitive enough in
order to detect minority variants or archived resist-
ance mutations. Phenotypic tests are still largely
iams & Wilkins. Unautho
being used for herpes simplex viruses (HSVs), but
disbanding of virus isolation facilities and adoption
of NGS technology will make it easier and cheaper to
sequence large genes, and therefore the prediction is
that genotypic HSV resistance tests will be easier to
come by in the future. For HIV-1, their clinical use is
restricted to a few specialized laboratories whilst
being more popular in certain countries such as
the USA. Although not a resistance test per se,
phenotypic HIV-1 tropism testing determines the
HIV-1 coreceptor usage of patient-derived Env-
recombinant viruses to infect reporter cell lines
expressing HIV-1 receptors and coreceptors prior
to the use of CCR5 antagonists such as maraviroc.

Genotypic resistance testing is faster and is
based on PCR amplification and sequencing of
viral drug target genes in order to detect drug
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KEY POINTS

� Resistance tests should be requested when there has
been no clinical improvement or viral load rebound,
but it should be kept in mind that for some viral
infections there is not always an immediate antiviral
response.

� Clinicians are now considering HIV-1 resistance tests as
soon as the viral load rebounds above 50 copies/ml.
However, there is a greater risk of PCR amplification
bias, and the test should be repeated if the viral load
rises further.

� Current genotypic resistance tests are insensitive at
detecting drug-resistant minority variants.

� NGS increases the ability of genotypic resistance tests
to detect minority variants even if they make up as little
as 1% of the total virus population.

� Laboratories are switching to NGS technology
following technical validation, but clinical validation,
reporting and interpretation of minority variants are still
lagging behind.
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resistance-associated mutations. Various on-line
genotypic interpretation systems are available to
interpret complex genetic changes using rule-based
computational tools. Unfortunately, no database
and on-line interpretation tools exist for HSV and
varicella zoster virus (VZV) mutations and there can
be ambiguity in interpreting numerous amino acid
substitutions, whereas only genes encoding the
thymidine kinase and DNA polymerase frame shift
mutations and stops of translation can be inter-
preted safely [1–3,4

&

].
Genotypic HIV-1 tropism testing is not based on

specific amino acid changes, but rather a prediction
of the coreceptor usage of the circulating viruses
based on the positive charge of the V3 loop in the
virus’ envelope. Most laboratories use a geno-to-
pheno coreceptor estimation model after sequencing
to determine whether the virus is R5 or X4 tropic. It is
generally treated as a ‘resistance’ test and requested
pretreatment to establish whether the virus is R5
tropic. It is used after failure to see whether there
has been a switch to X4 virus which has usually been
present as minority variants before starting mara-
viroc, but which was not amplified by the original
genotypic test [5,6]. However, only a phenotypic test
can establish whether true maraviroc drug resistance
has developed in patients who fail therapy without a
tropism switch to X4-tropic virus, as no specific
mutations have been associated with resistance [7].
Maraviroc resistance is fortunately a rare occurrence.

Not all genotypic tests rely on sequencing, and
certain mutations, such as oseltamivir point
Copyright © Lippincott Williams & Wilkins. Unau
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mutations in the influenza neuraminidase gene,
lend themselves well to single nucleotide polymor-
phisms (SNPs) testing in which case a simple RT-PCR
test can quickly and cheaply establish whether
resistance is present. Allele-specific RT-PCR assays
have also been designed to detect known HIV point
mutations, but it is unlikely that their use will move
beyond the research setting.

PRINCIPLES REGARDING REQUESTING
AND INTERPRETING RESISTANCE TESTS
Antiviral resistance tests are usually requested
following suboptimal antiviral response or viral
rebound. Both can be measured objectively by quan-
titative viral load tests for viral infections such as
HIV, hepatitis B virus (HBV) or cytomegalovirus
(CMV). Lack of clinical improvement can also be
an indication of suboptimal antiviral response, for
example, influenza or herpetic ulcers.

Routine baseline antiviral resistance tests are
also used to identify transmitted drug resistance
prior to starting therapy when the prevalence of
circulating resistant strains is high enough to war-
rant screening, for example, HIV and influenza.
Certain naturally occurring hepatitis C virus
(HCV) polymorphisms such as Q80K, frequently
found among genotype 1a in 19–48% of cases,
require exclusion before the use of simeprevir
[8

&&

]. Clinical guidelines on managing HIV, CMV,
HBV and influenza resistance advise on when to test
for antiviral resistance, what sample type as well as
how to interpret the absence of drug resistance
mutations [9–14].

Virus quasispecies with resistance mutations can
disappear quickly out of circulation when they are
replaced by more ‘fit’ wild-type viruses when
therapy is stopped and therefore minority variants
may be missed. This is especially true for many
viruses with high virus turnover such as HIV and
HCV. Current HIV-1 guidelines recommend that
a resistance test be performed whilst on failing
therapy or preferably within 4 weeks of stopping
[9,15]. It is also known that a HIV-1 CCR5 tropism
test result can change over time and a 90-day cut-off
has been applied as a practical time period for which
the result is valid [10]. This lack of test sensitivity
creates uncertainty for resistance tests, affecting all
viral infections. NGS technology is able to detect
resistant minority variants, also known as low abun-
dance drug resistance variants, even if they only
make up 1% of the circulating virus population.

CLINICAL USEFULNESS OF CURRENT
TESTS
The clinical added value that resistance tests cur-
rently provide is difficult to establish. Most data
thorized reproduction of this article is prohibited.
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exist on the clinical usefulness of HIV-1 drug resist-
ance tests. Poor adherence to antivirals with the
subsequent virological failure is not always associ-
ated with drug resistance. It is therefore not uncom-
mon to find no resistance mutations in patients
with virological failure, especially if the patient is
on ‘high genetic barrier’ drugs such as boosted pro-
tease inhibitors and dolutegravir for HIV-1, tenofo-
vir and entecavir for HBV and sofosbuvir for HCV.
For ‘low genetic barrier’ drugs in which single crucial
mutations develop easily, drug resistance is assumed
upon virological failure, for example, 3TC or FTC in
HIV-1 therapy and all the new HCV direct-acting
antiviral (DAA) agents apart from sofosbuvir. In
these cases, it is best to stop treatment upon viro-
logical failure.

Drug resistance is also usually assumed after
prolonged therapy and no clinical response in
HSV and VZV infections because resistance tests
are not readily available with these infections. It is
well known that immunocompromised patients are
at higher risk of drug resistance, but HSV resistance
should also be considered when HSV infections
involve immune-privilege sites, for example, her-
petic keratitis and encephalitis [4

&

]. Therapy
changes are also frequently made in clinical practice
without a resistance test after a 2-to 3-week period of
poor response to CMV treatment in transplant
patients. However, CMV resistance takes weeks to
months to develop and many patients see an initial
increase in viral load on therapy [16,17]. Patients
with severe or progressive influenza who do not
clinically improve on neuraminidase inhibitors,
especially if they are immunocompromised, should
have a resistance test [14].

In a complex viral infection like HIV-1, the
usefulness of resistance testing is even harder to
define. Most prospective studies demonstrated
only modest benefit before resistance tests became
standard of care in HIV-1 infections [18–21]. There
were many confounding factors that influenced
the early trials. A meta-analysis of the earlier clinical
trials demonstrated a clinical benefit of only 10%
increase of undetectable HIV-1 viral load that was
seen by 6 months [22,23].

The amplification rates of HIV-1 genotypic
resistance tests in samples with a low viral load have
improved over the years, and resistance testing
should definitely be performed upon virological
failure above 200 copies/ml. However, guideline
guidance varies from above 50 copies/ml to above
1000 copies/ml [10,9]. Unfortunately the success
rate of the tests drop substantially the lower the
viral load. The stochastic bias of amplifying only
some viral quasispecies also increases with low viral
load, and therefore the possibility of missing
opyright © Lippincott Williams & Wilkins. Unautho
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resistant minority variant increases. Reassuringly,
studies have shown that it is possible to detect
resistance mutations at low viral loads [24,25]. Most
clinicians act upon the presence of drug-resistant
mutations, but their absence does not totally
exclude resistance and the test should be repeated
when there is a further rise in viral load. The import-
ance and risk of resistance developing in patients
with persistent low-level viraemia and recently
reported very low-level viraemia is not yet fully
understood. This is mainly due to the inaccuracy
and insensitivity of resistance tests at such low viral
load levels. It is unlikely that NGS will be more
useful for low-level viraemias since all tests that rely
on initial PCR amplification step will be influenced
by the amplification bias.
NEXT-GENERATION SEQUENCING TESTS

Current diagnostic genotypic resistance tests use an
insensitive Sanger sequencing method also known
as bulk sequencing, whereby the majority or con-
sensus sequence is displayed with some secondary
traces if another quasispecies virus is present at more
than 25% of the total. NGS technology, however,
uses PCR-amplified single-molecule sequencing,
that is, all quasispecies are individually sequenced
and displayed which enables it to pick up minority
variants even as low as 1% of the total. It is also
commonly referred to as ultradeep sequencing or
second-generation sequencing. Using NGS to
sequence near full-length viral genomes is known
as whole-genome sequencing (WGS) and has the
advantage of providing additional data to NGS
resistance gene sequencing [26

&

].
TECHNICAL CHALLENGES

NGS is currently mainly used in research settings,
but many laboratories are in the process of validat-
ing it for their routine diagnostic work. The unpre-
cedented resolution of the technology can be
hampered by reverse transcriptase and PCR errors
as well as sequence-related errors which obscure the
presence of true low-frequency minority variants
[27]. Various filtering and quality-checking software
solutions are used and together with the assembling
and reporting software are referred to as NGS pipe-
lines. It is well established that all platforms suffer
from sequencing errors such as insertions and
deletions (indel errors) and low intensities. It is
important that quality assessment software mini-
mizes sequencing errors in order not to overcall
minority variants. It can, however, be difficult to
distinguish assay RT-PCR-derived insertions and
deletions from viral genetic changes which confer
rized reproduction of this article is prohibited.
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drug resistance [28]. The RT-PCR step can even cause
in-vitro viral strain recombination as is observed
in vivo HIV infections [29,30]. Another important
quality issue is the increased risk for sample con-
tamination due to the immense sensitivity of the
assay.

Apart from the need for automation and other
technical issues, the biggest challenge for NGS-based
assays is the clinical interpretation of the presence of
minority variants. This is complicated by the fact
that the unreliability of detecting minority variants
at specific percentages, for example 1, 2, 5 and 10%,
is exacerbated by low viral load levels (input DNAs)
due to sampling bias and unequal amplification
during the early cycles of PCR. Any PCR spurious
nucleotide misincorporation or unequal amplifica-
tion of quasispecies templates without mutations
could result in over or under calling of minority
variants due to the fact that high proportion of
sequence reads derive from a few input templates
[31,32]. The current NGS platforms tend to sequence
short fragments, and it is therefore generally not
possible to establish the relationship between
genetic changes along the genome sequenced.

The next wave of sequencing technology, the
so-called third-generation sequencing, using single-
molecule real-time (SMRT) sequencing can do away
with a PCR enrichment step, but it then suffers from
low signal strength and the need for high viral
loads. However, SMRT gives much longer read
lengths which will probably give clinicians and
researchers the true picture of the breadth and depth
of individual circulating viruses by sequencing long
enough reads to include the whole viral genome,
reliably linking mutations to individual viruses.
SMRT instruments are already being used in research
settings.
COST

Resistance tests costs have generally been falling as
laboratories have introduced more automated
sample processing. Testing for SNPs using RT-PCRs
is by far the cheapest option, but not all resistance
mutations are surrounded by the required conserved
sequence, nor is it practical when many different
resistance mutations need to be tested for in one
virus. It is hoped that the sequence capacity of NGS
and low cost per nucleotide sequence will drive
down costs further once the labour-intensive and
expensive library preparation steps have been auto-
mated. It would therefore not cost much extra to
sequence all HIV-1 drug-associated genes, that is,
Reverse Transcriptase, Protease, Integrase and Enve-
lope when a resistance test is requested [33]. This
should ensure further cost savings since the current
Copyright © Lippincott Williams & Wilkins. Unau
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integrase resistance test is a separate standalone test
which is more frequently requested as there is a
move to use integrase inhibitors as first-line combi-
nation antiretroviral therapy (cART). There is also
the possibility of sequencing samples in bulk which
can potentially provide resistance testing service to
developing countries if samples such as dried blood
spots are shipped to a high throughput laboratory
[34]. NGS should also bring the cost of sequencing
both the thymidine kinase/phosphotransferase and
polymerase genes from HSV, VZV and CMV down to
a level in which it will become routine to look for
resistance earlier in the disease course.
CLINICAL IMPACT OF NEXT-GENERATION
SEQUENCING RESISTANCE TESTS

These tests are undoubtedly more sensitive, but the
outcome data are mixed with not all studies show-
ing a clinical benefit [35,36]. NGS is likely to become
the new standard of care and there is general agree-
ment that the percentage of minority variant report-
ing, that is 20, 10, 5, 2 and 1%, requires clinical
validation to interpret the risk of virological failure
[37]. Ideally, all clinical trials should retrospectively
perform NGS analysis and publish their results even
if they show no significant difference in order to
help with clinically validating low-percentage
minority variant reporting.
IMPACT OF NEXT-GENERATION
SEQUENCING ON HIV-1 RESISTANCE
TESTING

Problems exist with interpreting the published data
because of the use of historical cohorts, small stud-
ies, over-interpretation, reporting of positive associ-
ations and not using the same cut-offs.
Treatment-naı̈ve patients

The greatest impact will be in detecting minority
variants in treatment-naı̈ve patients before they
commence low genetic barrier NNRTI drugs such
as nevirapine and efavirenz. The best data are from a
meta-analysis of 10 studies which demonstrated a
clinically significant 2.5 to 3 times increase risk of
virological failure in patients harbouring these
minority variants [38]. There is currently no evi-
dence of a significantly increased risk of virological
failure when minority variants are present for high
genetic barrier drugs such as boosted protease
inhibitors or NRTIs. This is in spite of the fact that
minority variants are significantly increased when
tested for by NGS [39,40]. It is fair to say that the risk
of drug resistance development in modern first-line
thorized reproduction of this article is prohibited.
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cART clinical licensing trials using high genetic
barrier drugs is very low, and therefore the argument
could be that NGS will not add much value over
and above current tests to screen for hidden trans-
mitted drug resistance minority variants prior to
starting therapy [41,42]. NGS has the potential
to deny treatment to the majority of patients to a
drug that they would have responded to because of
overcalling of minority variants at low percentages
[43].

Treatment-experienced patients
NGS can provide additional information on
previous resistance mutations in treatment-experi-
enced patients [44]. The increased sensitivity is
useful in cases in which individuals have stopped
their medication and in which ‘unfit’ viruses have
become minority quasispecies and in patients with
complex and incomplete treatment histories in
which resistance tests were either not performed
or in which the clinician does not have access to
the reports. The added sensitivity will help deter-
mine whether drugs such as etravirine will be effec-
tive [45,46

&&

].

Tropism detection
Current genotypic tropism tests lack sensitivity to
detect minority variant X4 tropic viruses which is
more of a risk if the patient has a low CD4 count.
Several studies have evaluated the ability of NGS to
correctly predict non-R5 HIV-1 variants and the pre-
diction of HIV-1 coreceptor usage has been highly
concordant with phenotypic assays (82–87%)
[47–49]. Reanalysis of themaravirocclinical trialdata
also showed that the ability of NGS in predicting the
success of maraviroc-based antiretroviral regimens
is as good as the enhanced sensitive phenotypic
assay which is the gold standard [47,48].
IMPACT OF NEXT-GENERATION
SEQUENCING ON RESISTANCE TESTING
FOR VIRUSES OTHER THAN HIV

Very little data is available which compare the
clinical outcome based on the presence or absence
of minority variants for viruses other than HIV.

Influenza
Antiviral resistance testing involves several labora-
tory techniques used in research and epidemiology
such as specific functional assays, the neuramini-
dase inhibition assay and molecular techniques
(SNP RT-PCR and sequencing) in circulating flu
viruses. The specific SNP RT-PCR assays are fast
and sensitive and therefore used in routine real-time
diagnostic laboratories. However, they only exist for
opyright © Lippincott Williams & Wilkins. Unautho
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common mutations. A recent publication has once
again illustrated how important minority viruses, in
this case the R292K mutation in H7N9 viruses from
China, can be masked by wildtype viruses when an
enzyme-based test was used [50]. Reference labora-
tories are increasingly using WGS to characterize
circulating viruses and to identify common and
new resistance point mutations.

Hepatitis B virus
The same concept holds true for hepatitis B in which
lamivudine drug resistance can persist at a low level
only identifiable by means of NGS following stop-
ping of the drug [51].

Hepatitis C virus
Measuring and recording the resistance mutations
upon virological failure is not used in clinical
practice, primarily because interpretation and next
regimen drug selection are not yet established
[8

&&

,52]. Stopping rules following inadequate viral
load response or rebound exist to limit the amount
of drug resistance developing. As with HIV, drug
resistance comes at a fitness cost, and stopping drug
therapy results in the least ‘fit’ variants being
quickly replaced by ‘fitter’ variants. Protease inhibi-
tor mutations have been shown to disappear after a
median follow-up period of 30 months for 85% of
patients using standard population sequencing [53].
It is unlikely that minority variants will play a
significant role in the risk of treatment failure
because of the fact that resistance mutations are
not archived and that a combination of at least
two potent DAA agents is becoming common
practice.

Cytomegalovirus
As with HSV, the size of the UL54 (polymerase) gene
has always been a barrier to resistance testing, and
the smaller UL97 (viral kinase) gene has been used as
first-line genotypic testing to exclude ganciclovir
resistance since resistance usually develops in this
gene first. However, failing treatment for a pro-
longed period of time on ganciclovir increases the
risk of additional UL54 mutations developing. This
increases the risk of cidofovir cross-resistance, but
not for foscarnet cross-resistance [17]. Resistance
during ganciclovir prophylaxis is rare. As with
HSV and VZV, NGS technology should eventually
provide a cheaper and quicker way of sequencing
both relevant genes.

WGS of viruses, such as VZV, HSV and CMV,
directly from clinical samples should provide not
only information on developing drug resistance,
but also better understanding of host–virus inter-
actions [54].
rized reproduction of this article is prohibited.
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IMPACT OF NEXT-GENERATION
SEQUENCING BEYOND PROVIDING
RESISTANCE DATA

WGS and third generation sequencing will have
an impact beyond resistance testing. Quasispecies
relatedness of individual viruses will be able help
determine whether a patient has recently been
infected, been infected by more than one founder
virus or has superinfection. These tests can also help
to determine whether different mutations are on the
same or different genomes. Further information can
also be obtained on the influence of immunological
pressures. Antiviral therapy has the potential, by
using rule-based computational tools, to be tailored
to the individual patient whilst exploiting this
additional information to the disadvantage of the
virus.

CONCLUSION

Although some resistance tests are as easy as per-
forming real-time PCR, the majority involve PCR
amplification, sequencing and at times complex
interpretation. NGS has the benefit of improved
sensitivity and the feasibility for WGS or at least
partial full-length sequencing which will be especi-
ally helpful in viral infections in which large genes
need to be sequenced, for example, herpes viruses.
The increased ability to identify minority variants
has been shown to be beneficial, but larger clinical
validations are necessary because there is a real
danger that patients will be denied certain drugs
or given complex four or five drug combinations
which will not be necessary. The greatest clinical
benefit of NGS so far has been in detecting minority
variants in the low genetic barrier HIV cART regi-
mens that contain efavirenz and nevirapine. In light
of the available data, switching genotypic HIV-1
tropism testing to the more sensitive NGS method
should be considered.

The clinical usefulness of NGS will undoubtedly
depend on the clinical scenario, number of available
antiviral agents, viral load and percentage minority
variant cut-off used. All in all, it is unlikely that
minority variants below 20% will increase risk of
virological failure beyond that of poor adherence
[38]. However, having both poor adherence and
the presence of drug resistance, minority variants
will increase a patient’s risk of virological failure
substantially.
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